Discovery of Pteridin-7(8H)-one-Based Irreversible Inhibitors Targeting the Epidermal Growth Factor Receptor (EGFR) Kinase T790M/L858R Mutant

Journal of Medicinal Chemistry
2013.0

Abstract

The EGFR T790M variant is an important mutation, resulting in approximately 50% of the clinically acquired resistance to approved EGFR inhibitors. Starting with a previously reported pyrimidine-based EGFR inhibitor, a novel pteridin-7(8H)-one scaffold with a high 3D similarity was found and transformed into irreversible inhibitors of the EGFR T790M mutant. The most potent compounds, 3q and 3x, exhibited excellent enzyme inhibitory activities, with subnanomolar IC50 values for both the wild-type and T790M/L858R double mutant EGFRs, as well as potent cellular antiproliferative activities against both gefitinib-sensitive and -resistant cancer cell lines. The in vivo antitumor efficacy study demonstrated that compound 3x significantly inhibited tumor growth and induced tumor stasis in an EGFR-T790M/L858R-driven human nonsmall-cell lung cancer xenograft mouse model. This work demonstrated the utility of this sophisticated computational design strategy for fast 3D scaffold hopping with competitive bioactivities to meet an important clinical need.

Knowledge Graph

Similar Paper

Discovery of Pteridin-7(8H)-one-Based Irreversible Inhibitors Targeting the Epidermal Growth Factor Receptor (EGFR) Kinase T790M/L858R Mutant
Journal of Medicinal Chemistry 2013.0
Design, Synthesis, and Biological Evaluation of Novel Conformationally Constrained Inhibitors Targeting Epidermal Growth Factor Receptor Threonine<sup>790</sup> → Methionine<sup>790</sup> Mutant
Journal of Medicinal Chemistry 2012.0
Discovery of new [1,4]dioxino[2,3-f]quinazoline-based inhibitors of EGFR including the T790M/L858R mutant
Bioorganic &amp; Medicinal Chemistry 2016.0
Discovery of selective irreversible inhibitors for EGFR-T790M
Bioorganic &amp; Medicinal Chemistry Letters 2011.0
C5-substituted pyrido[2,3-d]pyrimidin-7-ones as highly specific kinase inhibitors targeting the clinical resistance-related EGFR<sup>T790M</sup> mutant
MedChemComm 2015.0
Structure-Guided Development of Covalent and Mutant-Selective Pyrazolopyrimidines to Target T790M Drug Resistance in Epidermal Growth Factor Receptor
Journal of Medicinal Chemistry 2017.0
Design and synthesis of quinazolinones as EGFR inhibitors to overcome EGFR resistance obstacle
Bioorganic &amp; Medicinal Chemistry 2017.0
Trisubstituted Pyridinylimidazoles as Potent Inhibitors of the Clinically Resistant L858R/T790M/C797S EGFR Mutant: Targeting of Both Hydrophobic Regions and the Phosphate Binding Site
Journal of Medicinal Chemistry 2017.0
Utilization of Structure-Based Design to Identify Novel, Irreversible Inhibitors of EGFR Harboring the T790M Mutation
ACS Medicinal Chemistry Letters 2016.0
Design, synthesis and biological evaluation of new molecules inhibiting epidermal growth factor receptor threonine790→ methionine790 mutant
MedChemComm 2012.0