Design, synthesis and anticonvulsant properties of new N-Mannich bases derived from 3-phenylpyrrolidine-2,5-diones

Bioorganic & Medicinal Chemistry
2013.0

Abstract

The synthesis and anticonvulsant properties of new N-Mannich bases of 3-phenyl- (9a-d), 3-(2-chlorophenyl)- (10a-d), 3-(3-chlorophenyl)- (11a-d) and 3-(4-chlorophenyl)-pyrrolidine-2,5-diones (12a-d) were described. The key synthetic strategies involve the formation of 3-substituted pyrrolidine-2,5-diones (5-8), and then aminoalkylation reaction (Mannich-type) with formaldehyde and corresponding secondary amines, which let to obtain the final compounds 9a-d, 10a-d, 11a-d and 12a-d in good yields. Initial anticonvulsant screening was performed in mice (ip) using the maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) seizures tests. The most effective compounds in mice were tested after oral administration in rats. The acute neurological toxicity was determined applying the minimal motor impairment rotarod test. The in vivo results revealed that numerous compounds were effective especially in the MES test (model of human tonic-clonic seizures). The most active in the MES seizures in rats was 1-[(4-benzyl-1-piperidyl)methyl]-3-(2-chlorophenyl)pyrrolidine-2,5-dione (10c) which showed ED50 value of 37.64mg/kg. It should be stressed that this molecule along with 9a, 9d and 10d showed protection in the psychomotor seizure test (6-Hz), which is known as an animal model of therapy-resistant epilepsy. Furthermore compounds 9a, 9d and 10d were also tested in the pilocarpine-induced status prevention (PISP) test to assess their potential effectiveness in status epilepticus. For the most promising molecule 9d an influence on human CYP3A4 isoform of P-450 cytochrome was studied in vitro.

Knowledge Graph

Similar Paper

Design, synthesis and anticonvulsant properties of new N-Mannich bases derived from 3-phenylpyrrolidine-2,5-diones
Bioorganic & Medicinal Chemistry 2013.0
Synthesis and anticonvulsant activity of new N-Mannich bases derived from 3-(2-fluorophenyl)- and 3-(2-bromophenyl)-pyrrolidine-2,5-diones. Part II
Bioorganic & Medicinal Chemistry 2012.0
Synthesis and evaluation of anticonvulsant properties of new N -Mannich bases derived from pyrrolidine-2,5-dione and its 3-methyl-, 3-isopropyl, and 3-benzhydryl analogs
Bioorganic & Medicinal Chemistry Letters 2017.0
Synthesis and evaluation of anticonvulsant properties of new N-Mannich bases derived from 3-(1-phenylethyl)- and 3-benzyl-pyrrolidine-2,5-dione
Bioorganic & Medicinal Chemistry Letters 2016.0
Synthesis and anticonvulsant activity of new N-Mannich bases derived from 5-cyclopropyl-5-phenyl- and 5-cyclopropyl-5-(4-chlorophenyl)-imidazolidine-2,4-diones
Bioorganic & Medicinal Chemistry 2011.0
Synthesis and biological properties of new N-Mannich bases derived from 3-methyl-3-phenyl- and 3,3-dimethyl-succinimides. Part V
European Journal of Medicinal Chemistry 2013.0
Design, synthesis, and anticonvulsant activity of new N-Mannich bases derived from spirosuccinimides and spirohydantoins
Bioorganic & Medicinal Chemistry 2010.0
Design, synthesis, and anticonvulsant activity of N-phenylamino derivatives of 3,3-dialkyl-pyrrolidine-2,5-diones and hexahydro-isoindole-1,3-diones
Bioorganic & Medicinal Chemistry 2008.0
Synthesis and anticonvulsant activity of new N-[(4-arylpiperazin-1-yl)-alkyl] derivatives of 3-phenyl-pyrrolidine-2,5-dione
European Journal of Medicinal Chemistry 2009.0
Synthesis and anticonvulsant activity of new 1-[2-oxo-2-(4-phenylpiperazin-1-yl)ethyl]pyrrolidine-2,5-diones
Bioorganic & Medicinal Chemistry Letters 2011.0