Combining the tail and the ring approaches for obtaining potent and isoform-selective carbonic anhydrase inhibitors: Solution and X-ray crystallographic studies

Bioorganic & Medicinal Chemistry
2014.0

Abstract

5-(3-Tosylureido)pyridine-2-sulfonamide and 4-tosylureido-benzenesulfonamide (ts-SA) only differ by the substitution of a CH by a nitrogen atom, but they have very different inhibitory properties against the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). By means of X-ray crystallography on the human CA II adducts of the two compounds these differences have been rationalized. As all sulfonamides, the two compounds bind in deprotonated form to the Zn(II) ion from the enzyme active site and their organic scaffolds extend throughout the cavity, participating in many interactions with amino acid residues and water molecules. However the pyridine derivative undergoes a tilt of the heterocyclic ring compared to the benzene analog, which leads to a very different orientation of the two scaffolds when bound to the enzyme. This tilt also leads to a clash between a carbon atom from the pyridine ring of the first inhibitor and the OH moiety of Thr200, leading to less effective inhibitory properties of the pyridine versus the benzene sulfonamide derivative. Indeed, ts-SA is a promiscuous, low nanomolar inhibitor of 7 out of 10 human (h) CA isoforms, whereas the pyridine sulfonamide is a low nanomolar inhibitor only of the tumor-associated hCA IX and XII, being less effective against other 9 isoforms. Thus, a difference of one atom (N vs CH) in two isostructural sulfonamides leads to drastic differences of activity, phenomenon understood at the atomic level through the high resolution crystallographic structure and kinetic measurements reported in the paper. Combining the tail and the ring approaches in the same chemotype leads to isoform-selective, highly effective sulfonamide CA inhibitors.

Knowledge Graph

Similar Paper

Combining the tail and the ring approaches for obtaining potent and isoform-selective carbonic anhydrase inhibitors: Solution and X-ray crystallographic studies
Bioorganic & Medicinal Chemistry 2014.0
Structural effect of phenyl ring compared to thiadiazole based adamantyl-sulfonamides on carbonic anhydrase inhibition
Bioorganic & Medicinal Chemistry 2013.0
Conformational variability of different sulfonamide inhibitors with thienyl-acetamido moieties attributes to differential binding in the active site of cytosolic human carbonic anhydrase isoforms
Bioorganic & Medicinal Chemistry 2011.0
Carbonic anhydrase inhibitors. The X-ray crystal structure of human isoform II in adduct with an adamantyl analogue of acetazolamide resides in a less utilized binding pocket than most hydrophobic inhibitors
Bioorganic & Medicinal Chemistry Letters 2010.0
Carbonic anhydrase inhibitors: Inhibition of human, bacterial, and archaeal isozymes with benzene-1,3-disulfonamides—Solution and crystallographic studies
Bioorganic & Medicinal Chemistry Letters 2007.0
Novel benzenesulfonamides aryl and arylsulfone conjugates adopting tail/dual tail approaches: Synthesis, carbonic anhydrase inhibitory activity and molecular modeling studies
European Journal of Medicinal Chemistry 2021.0
Coumarinyl-substituted sulfonamides strongly inhibit several human carbonic anhydrase isoforms: solution and crystallographic investigations
Bioorganic & Medicinal Chemistry 2010.0
Sulfonamide Inhibitors of Human Carbonic Anhydrases Designed through a Three-Tails Approach: Improving Ligand/Isoform Matching and Selectivity of Action
Journal of Medicinal Chemistry 2020.0
Halogenated and di-substituted benzenesulfonamides as selective inhibitors of carbonic anhydrase isoforms
European Journal of Medicinal Chemistry 2020.0
Structural Insights on Carbonic Anhydrase Inhibitory Action, Isoform Selectivity, and Potency of Sulfonamides and Coumarins Incorporating Arylsulfonylureido Groups
Journal of Medicinal Chemistry 2014.0