Synthesis and antinociceptive properties of N-phenyl-N-(1-(2-(thiophen-2-yl)ethyl)azepane-4-yl)propionamide in the mouse tail-flick and hot-plate tests

Bioorganic & Medicinal Chemistry Letters
2014.0

Abstract

The goals of this study, were to synthesize N-phenyl-N-(1-(2-(thiophen-2-yl)ethyl)azepane-4-yl)propionamide (1c) and determine its antinociceptive properties. The effect of clonidine on 1c antinociception and the involvement of opioid, α2-adrenergic, and I2 imidazoline receptors in 1c antinociception were studied. Also examined was the effect of an endothelin ETA receptor antagonist on 1c antinociception. Synthesis of 1c was accomplished in two steps using modifications of previously reported methods. Antinociceptive (tail-flick and hot-plate) latencies were measured in male Swiss Webster mice treated with 1c; antagonists+1c; clonidine+1c; or antagonists+clonidine+1c. Mice were pretreated with naloxone (opioid antagonist), yohimbine (α2-adrenoceptor antagonist), idazoxan (α2-adrenoceptor/I2-imidazoline antagonist), BU224 (I2-imidazoline antagonist) or BQ123 (endothelin ETA receptor antagonist) to study the involvement of these receptors. Compound 1c produced a dose-dependent increase in antinociceptive latencies; ED50 values were 0.15 mg/kg and 0.16 mg/kg, respectively, in the tail flick and hot plate tests. Naloxone, but not yohimbine, idazoxan or BU224, blocked 1c antinociception. Neither clonidine nor BQ123 potentiated 1c antinociception. Results demonstrate that 1c is 15-times more potent than morphine. The antinociceptive effect of 1c is mediated through opioid receptors. The α2-adrenergic, I2-imidazoline and endothelin ETA receptors are not involved in 1c antinociception.

Knowledge Graph

Similar Paper

Synthesis and antinociceptive properties of N-phenyl-N-(1-(2-(thiophen-2-yl)ethyl)azepane-4-yl)propionamide in the mouse tail-flick and hot-plate tests
Bioorganic & Medicinal Chemistry Letters 2014.0
[(3-Chlorophenyl)piperazinylpropyl]pyridazinones and Analogues as Potent Antinociceptive Agents
Journal of Medicinal Chemistry 2003.0
Further Studies on Arylpiperazinyl Alkyl Pyridazinones: Discovery of an Exceptionally Potent, Orally Active, Antinociceptive Agent in Thermally Induced Pain
Journal of Medicinal Chemistry 2009.0
4-Amino-5-substituted-3(2H)-pyridazinones as Orally Active Antinociceptive Agents:  Synthesis and Studies on the Mechanism of Action
Journal of Medicinal Chemistry 2007.0
Synthesis, Nicotinic Acetylcholine Receptor Binding, and Antinociceptive Properties of 2-exo-2-(2‘-Substituted-3‘-phenyl-5‘-pyridinyl)-7-azabicyclo[2.2.1]heptanes. Novel Nicotinic Antagonist
Journal of Medicinal Chemistry 2001.0
Synthesis and Biological Evaluation at Nicotinic Acetylcholine Receptors of N-Arylalkyl- and N-Aryl-7-Azabicyclo[2.2.1]heptanes
Journal of Medicinal Chemistry 2002.0
Arylpiperazinylalkylpyridazinones and Analogues as Potent and Orally Active Antinociceptive Agents:  Synthesis and Studies on Mechanism of Action
Journal of Medicinal Chemistry 2006.0
New orally effective 3-(2-nitro)phenylpropanamide analgesic derivatives: Synthesis and antinociceptive evaluation
European Journal of Medicinal Chemistry 2013.0
Synthesis and antinociceptive activities of some pyrazoline derivatives
European Journal of Medicinal Chemistry 2009.0
Synthesis, Nicotinic Acetylcholine Receptor Binding, and Antinociceptive Properties of 2-exo-2-(2‘,3‘-Disubstituted 5‘-pyridinyl)-7-azabicyclo[2.2.1]heptanes:  Epibatidine Analogues
Journal of Medicinal Chemistry 2002.0