Carbamazepine derivatives with P2X4 receptor-blocking activity

Bioorganic & Medicinal Chemistry
2014.0

Abstract

Antagonists for the P2 receptor subtype P2X4, an ATP-activated cation channel receptor, have potential as novel drugs for the treatment of neuropathic pain and other inflammatory diseases. In the present study, a series of 47 carbamazepine derivatives including 32 novel compounds were designed, synthesized, and evaluated as P2X4 receptor antagonists. Their potency to inhibit ATP-induced calcium influx in 1321N1 astrocytoma cells stably transfected with the human P2X4 receptor was determined. Additionally, species selectivity (human, rat, mouse) and receptor subtype selectivity (P2X4 vs P2X1, 2, 3, 7) were investigated for selected derivatives. The most potent compound of the present series, which exhibited an allosteric mechanism of P2X4 inhibition, was N,N-diisopropyl-5H-dibenz[b,f]azepine-5-carboxamide (34, IC50 of 3.44μM). The present study extends the so far very limited knowledge on structure-activity relationships of P2X4 receptor antagonists.

Knowledge Graph

Similar Paper

Carbamazepine derivatives with P2X4 receptor-blocking activity
Bioorganic & Medicinal Chemistry 2014.0
N-Substituted Phenoxazine and Acridone Derivatives: Structure–Activity Relationships of Potent P2X4 Receptor Antagonists
Journal of Medicinal Chemistry 2012.0
Therapeutic potentials and structure-activity relationship of 1,3-benzodioxole N-carbamothioyl carboxamide derivatives as selective and potent antagonists of P2X4 and P2X7 receptors
European Journal of Medicinal Chemistry 2022.0
Design and synthesis of adamantane-1-carbonyl thiourea derivatives as potent and selective inhibitors of h-P2X4 and h-P2X7 receptors: An Emerging therapeutic tool for treatment of inflammation and neurological disorders
European Journal of Medicinal Chemistry 2022.0
Discovery and Structure Relationships of Salicylanilide Derivatives as Potent, Non-acidic P2X1 Receptor Antagonists
Journal of Medicinal Chemistry 2020.0
Structure–Activity Relationship and Neuroprotective Activity of 1,5-Dihydro-2H-naphtho[1,2-b][1,4]diazepine-2,4(3H)-diones as P2X4 Receptor Antagonists
Journal of Medicinal Chemistry 2022.0
Design, Synthesis, and Preliminary Pharmacological Evaluation of 4-Aminopiperidine Derivatives as N-Type Calcium Channel Blockers Active on Pain and Neuropathic Pain
Journal of Medicinal Chemistry 2004.0
Synthesis and structure–activity relationships of carboxylic acid derivatives of pyridoxal as P2X receptor antagonists
Bioorganic & Medicinal Chemistry 2013.0
Pyrrolinone derivatives as a new class of P2X3 receptor antagonists. Part 3: Structure-activity relationships of pyrropyrazolone derivatives
Bioorganic & Medicinal Chemistry Letters 2020.0
Novel Potent AMPA/Kainate Receptor Antagonists:  Synthesis and Anticonvulsant Activity of a Series of 2-[(4-Alkylsemicarbazono)-(4-amino- phenyl)methyl]-4,5-methylenedioxyphenylacetic Acid Alkyl Esters
Journal of Medicinal Chemistry 2002.0