Design, synthesis, pharmacological evaluation, QSAR analysis, molecular modeling and ADMET of novel donepezil–indolyl hybrids as multipotent cholinesterase/monoamine oxidase inhibitors for the potential treatment of Alzheimer's disease

European Journal of Medicinal Chemistry
2014.0

Abstract

The design, synthesis, and pharmacological evaluation of donepezil-indolyl based amines 7-10, amides 12-16, and carboxylic acid derivatives 5 and 11, as multipotent ASS234 analogs, able to inhibit simultaneously cholinesterase (ChE) and monoamine oxidase (MAO) enzymes for the potential treatment of Alzheimer's disease (AD), is reported. Theoretical studies using 3D-Quantitative Structure-Activity Relationship (3D-QSAR) was used to define 3D-pharmacophores for inhibition of MAO A/B, AChE, and BuChE enzymes. We found that, in general, and for the same substituent, amines are more potent ChE inhibitors (see compounds 12, 13 versus 7 and 8) or equipotent (see compounds 14, 15 versus 9 and 10) than the corresponding amides, showing a clear EeAChE inhibition selectivity. For the MAO inhibition, amides were not active, and among the amines, compound 14 was totally MAO A selective, while amines 15 and 16 were quite MAO A selective. Carboxylic acid derivatives 5 and 11 showed a multipotent moderate selective profile as EeACE and MAO A inhibitors. Propargylamine 15 [N-((5-(3-(1-benzylpiperidin-4-yl)propoxy)-1-methyl-1H-indol-2-yl)methyl)prop-2-yn-1-amine] resulted in the most potent hMAO A (IC50 = 5.5 ± 1.4 nM) and moderately potent hMAO B (IC50 = 150 ± 31 nM), EeAChE (IC50 = 190 ± 10 nM), and eqBuChE (IC50 = 830 ± 160 nM) inhibitor. However, the analogous N-allyl and the N-morpholine derivatives 16 and 14 deserve also attention as they show an attractive multipotent profile. To sum up, donepezil-indolyl hybrid 15 is a promising drug for further development for the potential prevention and treatment of AD.

Knowledge Graph

Similar Paper

Design, synthesis, pharmacological evaluation, QSAR analysis, molecular modeling and ADMET of novel donepezil–indolyl hybrids as multipotent cholinesterase/monoamine oxidase inhibitors for the potential treatment of Alzheimer's disease
European Journal of Medicinal Chemistry 2014.0
Synthesis, Biological Evaluation, and Molecular Modeling of Donepezil and N-[(5-(Benzyloxy)-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine Hybrids as New Multipotent Cholinesterase/Monoamine Oxidase Inhibitors for the Treatment of Alzheimer’s Disease
Journal of Medicinal Chemistry 2011.0
Design, synthesis and biological evaluation of novel donepezil–coumarin hybrids as multi-target agents for the treatment of Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2016.0
Chromone and donepezil hybrids as new multipotent cholinesterase and monoamine oxidase inhibitors for the potential treatment of Alzheimer's disease
RSC Medicinal Chemistry 2020.0
Donepezil + propargylamine + 8-hydroxyquinoline hybrids as new multifunctional metal-chelators, ChE and MAO inhibitors for the potential treatment of Alzheimer's disease
European Journal of Medicinal Chemistry 2014.0
Structure-based design of novel donepezil-like hybrids for a multi-target approach to the therapy of Alzheimer's disease
European Journal of Medicinal Chemistry 2022.0
Multipotent MAO and cholinesterase inhibitors for the treatment of Alzheimer's disease: Synthesis, pharmacological analysis and molecular modeling of heterocyclic substituted alkyl and cycloalkyl propargyl amine
European Journal of Medicinal Chemistry 2012.0
Donepezil-like multifunctional agents: Design, synthesis, molecular modeling and biological evaluation
European Journal of Medicinal Chemistry 2016.0
Design, synthesis and biological evaluation of 2,3-dihydro-5,6-dimethoxy-1H-inden-1-one and piperazinium salt hybrid derivatives as hAChE and hBuChE enzyme inhibitors
European Journal of Medicinal Chemistry 2020.0
Novel Donepezil-Based Inhibitors of Acetyl- and Butyrylcholinesterase and Acetylcholinesterase-Induced β-Amyloid Aggregation
Journal of Medicinal Chemistry 2008.0