Fused heterocyclic compounds bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 1: Design, synthesis and biological evaluation of novel 5,7-disubstituted pyrazolo[1,5-a]pyrimidine derivatives

Bioorganic & Medicinal Chemistry
2014.0

Abstract

In our continuous efforts to identify novel potent HIV-1 NNRTIs, a novel class of 5,7-disubstituted pyrazolo[1,5-a]pyrimidine derivatives were rationally designed, synthesized and evaluated for their anti-HIV activities in MT4 cell cultures. Biological results showed that most of the tested compounds displayed excellent activity against wild-type HIV-1 with a wide range of EC50 values from 5.98 to 0.07μM. Among the active compounds, 5a was found to be the most promising analogue with an EC50 of 0.07μM against wild-type HIV-1 and very high selectivity index (SI, 3999). Compound 5a was more effective than the reference drugs nevirapine (by 2-fold) and delavirdine (by 2-fold). In order to further confirm their binding target, an HIV-1 RT inhibitory assay was also performed. Furthermore, SAR analysis among the newly synthesized compounds was discussed and the binding mode of the active compound 5a was rationalized by molecular modeling studies.

Knowledge Graph

Similar Paper

Fused heterocyclic compounds bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 1: Design, synthesis and biological evaluation of novel 5,7-disubstituted pyrazolo[1,5-a]pyrimidine derivatives
Bioorganic & Medicinal Chemistry 2014.0
Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 4: Design, synthesis and biological evaluation of novel imidazo[1,2-a]pyrazines
European Journal of Medicinal Chemistry 2015.0
Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 2: Discovery of novel [1,2,4]Triazolo[1,5-a]pyrimidines using a structure-guided core-refining approach
European Journal of Medicinal Chemistry 2014.0
Fused heterocycles bearing bridgehead nitrogen as potent HIV-1 NNRTIs. Part 3: Optimization of [1,2,4]triazolo[1,5-a]pyrimidine core via structure-based and physicochemical property-driven approaches
European Journal of Medicinal Chemistry 2015.0
Design, synthesis and anti-HIV evaluation of novel 5-substituted diarylpyrimidine derivatives as potent HIV-1 NNRTIs
Bioorganic & Medicinal Chemistry 2021.0
Design, synthesis and biological evaluation of 3-benzyloxy-linked pyrimidinylphenylamine derivatives as potent HIV-1 NNRTIs
Bioorganic & Medicinal Chemistry 2013.0
Design, synthesis and preliminary SAR studies of novel N-arylmethyl substituted piperidine-linked aniline derivatives as potent HIV-1 NNRTIs
Bioorganic & Medicinal Chemistry 2014.0
Design, synthesis and anti-HIV evaluation of novel diarylpyridine derivatives as potent HIV-1 NNRTIs
European Journal of Medicinal Chemistry 2017.0
Synthesis and biological evaluation of pyridazine derivatives as novel HIV-1 NNRTIs
Bioorganic & Medicinal Chemistry 2013.0
Indazolyl-substituted piperidin-4-yl-aminopyrimidines as HIV-1 NNRTIs: Design, synthesis and biological activities
European Journal of Medicinal Chemistry 2020.0