Discovery of Pyrazolopyridones as a Novel Class of Noncovalent DprE1 Inhibitor with Potent Anti-Mycobacterial Activity

Journal of Medicinal Chemistry
2014.0

Abstract

A novel pyrazolopyridone class of inhibitors was identified from whole cell screening against Mycobacterium tuberculosis (Mtb). The series exhibits excellent bactericidality in vitro, resulting in a 4 log reduction in colony forming units following compound exposure. The significant modulation of minimum inhibitory concentration (MIC) against a Mtb strain overexpressing the Rv3790 gene suggested the target of pyrazolopyridones to be decaprenylphosphoryl-β-D-ribose-2'-epimerase (DprE1). Genetic mapping of resistance mutation coupled with potent enzyme inhibition activity confirmed the molecular target. Detailed biochemical characterization revealed the series to be a noncovalent inhibitor of DprE1. Docking studies at the active site suggest that the series can be further diversified to improve the physicochemical properties without compromising the antimycobacterial activity. The pyrazolopyridone class of inhibitors offers an attractive non-nitro lead series targeting the essential and vulnerable DprE1 enzyme for the discovery of novel antimycobacterial agents to treat both drug susceptible and drug resistant strains of Mtb.

Knowledge Graph

Similar Paper

Discovery of Pyrazolopyridones as a Novel Class of Noncovalent DprE1 Inhibitor with Potent Anti-Mycobacterial Activity
Journal of Medicinal Chemistry 2014.0
Identification and Profiling of Hydantoins—A Novel Class of Potent Antimycobacterial DprE1 Inhibitors
Journal of Medicinal Chemistry 2018.0
4-Aminoquinolone Piperidine Amides: Noncovalent Inhibitors of DprE1 with Long Residence Time and Potent Antimycobacterial Activity
Journal of Medicinal Chemistry 2014.0
Optimization of Hydantoins as Potent Antimycobacterial Decaprenylphosphoryl-β-<scp>d</scp>-Ribose Oxidase (DprE1) Inhibitors
Journal of Medicinal Chemistry 2020.0
Mycobacterium tuberculosis Decaprenylphosphoryl-β-<scp>d</scp>-ribose Oxidase Inhibitors: Expeditious Reconstruction of Suboptimal Hits into a Series with Potent in Vivo Activity
Journal of Medicinal Chemistry 2020.0
Overview of the Development of DprE1 Inhibitors for Combating the Menace of Tuberculosis
Journal of Medicinal Chemistry 2018.0
Discovery of Novel Thiophene-arylamide Derivatives as DprE1 Inhibitors with Potent Antimycobacterial Activities
Journal of Medicinal Chemistry 2021.0
Scaffold Morphing To Identify Novel DprE1 Inhibitors with Antimycobacterial Activity
ACS Medicinal Chemistry Letters 2019.0
Discovery and Structure–Activity-Relationship Study of N-Alkyl-5-hydroxypyrimidinone Carboxamides as Novel Antitubercular Agents Targeting Decaprenylphosphoryl-β-<scp>d</scp>-ribose 2′-Oxidase
Journal of Medicinal Chemistry 2018.0
Identification of novel benzothiopyranone compounds against Mycobacterium tuberculosis through scaffold morphing from benzothiazinones
European Journal of Medicinal Chemistry 2018.0