Design, synthesis and evaluation of novel quinazoline-2,4-dione derivatives as chitin synthase inhibitors and antifungal agents

Bioorganic & Medicinal Chemistry
2014.0

Abstract

A series of novel 1-methyl-3-substituted quinazoline-2,4-dione derivatives were designed, synthesized, and characterized by (1)H NMR, (13)C NMR and MS spectral data. Their inhibition against chitin synthase (CHS) and antifungal activities were evaluated in vitro. Results showed compounds 5b, 5c, 5e, 5f, 5j, 5k, 5l, and 5o had strong inhibitory potency against CHS. Compound 5c, which has the highest potency among these compounds, had a half-inhibition concentration (IC50) of 0.08mmol/L, while polyoxin B as positive drug had IC50 of 0.18mmol/L. These IC50 values of compounds 5i, 5m, 5n, and 5s were greater than 0.75mmol/L, which revealed that those compounds had weak inhibition activity against CHS. Moreover, most of these compounds exhibited moderate to excellent antifungal activities. In detail, to Candida albicans, the activities of compound 5g and 5k were 8-fold stronger than that of fluconazole and 4-fold stronger than that of polyoxin B; to Aspergillus flavus, the activities of 5g, 5l and 5o were16-fold stronger than that of fluconazole and 8-fold stronger than that of polyoxin B; to Cryptococcus neoformans, the minimum-inhibition-concentration (MIC) values of compounds 5c, 5d, 5e and 5l were comparable to those of fluconazole and polyoxin B. The antifungal activities of these compounds were positively correlated to their IC50 values against CHS. Furthermore, these compounds had negligible actions to bacteria. Therefore, these compounds were promising selective antifungal agents.

Knowledge Graph

Similar Paper

Design, synthesis and evaluation of novel quinazoline-2,4-dione derivatives as chitin synthase inhibitors and antifungal agents
Bioorganic & Medicinal Chemistry 2014.0
Design, synthesis and biological evaluation of novel quinazoline-2,4-diones conjugated with different amino acids as potential chitin synthase inhibitors
European Journal of Medicinal Chemistry 2018.0
Design, synthesis and biological evaluation of novel 3,4-dihydro-2(1H)-quinolinone derivatives as potential chitin synthase inhibitors and antifungal agents
European Journal of Medicinal Chemistry 2020.0
Design, synthesis and biological evaluation of novel 5-(piperazin-1-yl)quinolin-2(1H)-one derivatives as potential chitin synthase inhibitors and antifungal agents
European Journal of Medicinal Chemistry 2019.0
Design, synthesis, and biological evaluation of novel spiro[pyrrolidine-2,3′-quinolin]-2′-one derivatives as potential chitin synthase inhibitors and antifungal agents
European Journal of Medicinal Chemistry 2022.0
Design, synthesis and biological evaluation of novel diazaspiro[4.5]decan-1-one derivatives as potential chitin synthase inhibitors and antifungal agents
European Journal of Medicinal Chemistry 2019.0
Synthesis and biological evaluation of novel phosphoramidate derivatives of coumarin as chitin synthase inhibitors and antifungal agents
European Journal of Medicinal Chemistry 2016.0
Design and synthesis of 2-chloroquinoline derivatives as non-azoles antimycotic agents
Medicinal Chemistry Research 2011.0
Design, synthesis, and evaluation of novel 1-methyl-3-substituted quinazoline-2,4-dione derivatives as antimicrobial agents
Medicinal Chemistry Research 2014.0
Synthesis and biological evaluation of new 2‑substituted‑4‑amino-quinolines and -quinazoline as potential antifungal agents
Bioorganic & Medicinal Chemistry Letters 2022.0