Design, synthesis and biological evaluation of hybrid bioisoster derivatives of N-acylhydrazone and furoxan groups with potential and selective anti-Trypanosoma cruzi activity

European Journal of Medicinal Chemistry
2014.0

Abstract

Hybrid bioisoster derivatives from N-acylhydrazones and furoxan groups were designed with the objective of obtaining at least a dual mechanism of action: cruzain inhibition and nitric oxide (NO) releasing activity. Fifteen designed compounds were synthesized varying the substitution in N-acylhydrazone and in furoxan group as well. They had its anti-Trypanosoma cruzi activity in amastigotes forms, NO releasing potential and inhibitory cruzain activity evaluated. The two most active compounds (6, 14) both in the parasite amastigotes and in the enzyme contain the nitro group in para position of the aromatic ring. The permeability screening in Caco-2 cell and cytotoxicity assay in human cells were performed for those most active compounds and both showed to be less cytotoxic than the reference drug, benznidazole. Compound 6 was the most promising, since besides activity it showed good permeability and selectivity index, higher than the reference drug. Thereby the compound 6 was considered as a possible candidate for additional studies.

Knowledge Graph

Similar Paper

Design, synthesis and biological evaluation of hybrid bioisoster derivatives of N-acylhydrazone and furoxan groups with potential and selective anti-Trypanosoma cruzi activity
European Journal of Medicinal Chemistry 2014.0
New trypanocidal hybrid compounds from the association of hydrazone moieties and benzofuroxan heterocycle
Bioorganic & Medicinal Chemistry 2008.0
Design and synthesis of new (E)-cinnamic N-acylhydrazones as potent antitrypanosomal agents
European Journal of Medicinal Chemistry 2012.0
Preliminary in vitro evaluation of N′-(benzofuroxan-5-yl)methylene benzohydrazide derivatives as potential anti-Trypanosoma cruzi agents
MedChemComm 2012.0
Design, synthesis and cruzain docking of 3-(4-substituted-aryl)-1,2,4-oxadiazole-N-acylhydrazones as anti-Trypanosoma cruzi agents
Bioorganic & Medicinal Chemistry 2009.0
Design, synthesis and antitrypanosomal activity of some nitrofurazone 1,2,4-triazolic bioisosteric analogues
European Journal of Medicinal Chemistry 2016.0
Designing and exploring active N′-[(5-nitrofuran-2-yl) methylene] substituted hydrazides against three Trypanosoma cruzi strains more prevalent in Chagas disease patients
European Journal of Medicinal Chemistry 2015.0
Synthesis, trypanocidal activity and docking studies of novel quinoxaline-N-acylhydrazones, designed as cruzain inhibitors candidates
Bioorganic & Medicinal Chemistry 2009.0
Investigating the structure-activity relationships of N’ -[(5-nitrofuran-2-yl) methylene] substituted hydrazides against Trypanosoma cruzi to design novel active compounds
European Journal of Medicinal Chemistry 2018.0
5-Nitro-2-furfuriliden derivatives as potential anti-Trypanosoma cruzi agents: Design, synthesis, bioactivity evaluation, cytotoxicity and exploratory data analysis
Bioorganic & Medicinal Chemistry 2013.0