1-Substituted-5-[(3,5-dinitrobenzyl)sulfanyl]-1H-tetrazoles and their isosteric analogs: A new class of selective antitubercular agents active against drug-susceptible and multidrug-resistant mycobacteria

European Journal of Medicinal Chemistry
2014.0

Abstract

In this work, a new class of highly potent antituberculosis agents, 1-substituted-5-[(3,5-dinitrobenzyl)sulfanyl]-1H-tetrazoles and their oxa and selanyl analogs, is described. The minimal inhibitory concentration (MIC) values reached 1 μM (0.36-0.44 μg/mL) against Mycobacterium tuberculosis CNCTC My 331/88 and 0.25-1 μM against six multidrug-resistant clinically isolated strains of M. tuberculosis. The antimycobacterial effects of these compounds were highly specific because they were ineffective against all eight bacterial strains and eight fungal strains studied. Furthermore, these compounds exhibited low in vitro toxicity in four mammalian cell lines (IC50 > 30 μM). We also examined the structure-activity relationships of the compounds, particularly the effects on antimycobacterial activity of the number and position of the nitro groups, the linker between tetrazole and benzyl moieties, and the tetrazole itself. Relatively high variability of substituent R(1) on the tetrazole in the absence of negative effects on antimycobacterial activity allows further structural optimization with respect to toxicity and the ADME properties of the 1-substituted-5-[(3,5-dinitrobenzyl)sulfanyl]-1H-tetrazoles lead compounds.

Knowledge Graph

Similar Paper

1-Substituted-5-[(3,5-dinitrobenzyl)sulfanyl]-1H-tetrazoles and their isosteric analogs: A new class of selective antitubercular agents active against drug-susceptible and multidrug-resistant mycobacteria
European Journal of Medicinal Chemistry 2014.0
S-substituted 3,5-dinitrophenyl 1,3,4-oxadiazole-2-thiols and tetrazole-5-thiols as highly efficient antitubercular agents
European Journal of Medicinal Chemistry 2017.0
Structure-activity relationship studies on 3,5-dinitrophenyl tetrazoles as antitubercular agents
European Journal of Medicinal Chemistry 2017.0
Tetrazole regioisomers in the development of nitro group-containing antitubercular agents
MedChemComm 2014.0
Development of 3,5-Dinitrobenzylsulfanyl-1,3,4-oxadiazoles and Thiadiazoles as Selective Antitubercular Agents Active Against Replicating and NonreplicatingMycobacterium tuberculosis
Journal of Medicinal Chemistry 2016.0
Design, synthesis and antimycobacterial activity of 3,5-dinitrobenzamide derivatives containing fused ring moieties
Bioorganic & Medicinal Chemistry Letters 2018.0
Development of 3,5-Dinitrophenyl-Containing 1,2,4-Triazoles and Their Trifluoromethyl Analogues as Highly Efficient Antitubercular Agents Inhibiting Decaprenylphosphoryl-β-<scp>d</scp>-ribofuranose 2′-Oxidase
Journal of Medicinal Chemistry 2019.0
Development of (4-methoxyphenyl)-1H-tetrazol-5-amine regioisomers as a new class of selective antitubercular agents
European Journal of Medicinal Chemistry 2020.0
New class of methyl tetrazole based hybrid of (Z)-5-benzylidene-2-(piperazin-1-yl)thiazol-4(%H)-one as potent antitubercular agents
Bioorganic &amp; Medicinal Chemistry Letters 2014.0
Identification of N-Benzyl 3,5-Dinitrobenzamides Derived from PBTZ169 as Antitubercular Agents
ACS Medicinal Chemistry Letters 2018.0