Modification on Ursodeoxycholic Acid (UDCA) Scaffold. Discovery of Bile Acid Derivatives As Selective Agonists of Cell-Surface G-Protein Coupled Bile Acid Receptor 1 (GP-BAR1)

Journal of Medicinal Chemistry
2014.0

Abstract

Bile acids are signaling molecules interacting with the nuclear receptor FXR and the G-protein coupled receptor 1 (GP-BAR1/TGR5). GP-BAR1 is a promising pharmacological target for the treatment of steatohepatitis, type 2 diabetes, and obesity. Endogenous bile acids and currently available semisynthetic bile acids are poorly selective toward GP-BAR1 and FXR. Thus, in the present study we have investigated around the structure of UDCA, a clinically used bile acid devoid of FXR agonist activity, to develop a large family of side chain modified 3α,7β-dihydroxyl cholanoids that selectively activate GP-BAR1. In vivo and in vitro pharmacological evaluation demonstrated that administration of compound 16 selectively increases the expression of pro-glucagon 1, a GP-BAR1 target, in the small intestine, while it had no effect on FXR target genes in the liver. Further, compound 16 results in a significant reshaping of bile acid pool in a rodent model of cholestasis. These data demonstrate that UDCA is a useful scaffold to generate novel and selective steroidal ligands for GP-BAR1.

Knowledge Graph

Similar Paper

Modification on Ursodeoxycholic Acid (UDCA) Scaffold. Discovery of Bile Acid Derivatives As Selective Agonists of Cell-Surface G-Protein Coupled Bile Acid Receptor 1 (GP-BAR1)
Journal of Medicinal Chemistry 2014.0
Exploitation of Cholane Scaffold for the Discovery of Potent and Selective Farnesoid X Receptor (FXR) and G-Protein Coupled Bile Acid Receptor 1 (GP-BAR1) Ligands
Journal of Medicinal Chemistry 2014.0
Discovery of 3α,7α,11β-Trihydroxy-6α-ethyl-5β-cholan-24-oic Acid (TC-100), a Novel Bile Acid as Potent and Highly Selective FXR Agonist for Enterohepatic Disorders
Journal of Medicinal Chemistry 2016.0
Discovery and Optimization of Non-bile Acid FXR Agonists as Preclinical Candidates for the Treatment of Nonalcoholic Steatohepatitis
Journal of Medicinal Chemistry 2020.0
Novel Potent and Selective Bile Acid Derivatives as TGR5 Agonists: Biological Screening, Structure−Activity Relationships, and Molecular Modeling Studies
Journal of Medicinal Chemistry 2008.0
Structural modifications that increase gut restriction of bile acid derivatives
RSC Medicinal Chemistry 2021.0
Structure−Activity Relationship Study of Betulinic Acid, A Novel and Selective TGR5 Agonist, and Its Synthetic Derivatives: Potential Impact in Diabetes
Journal of Medicinal Chemistry 2010.0
7-Methylation of Chenodeoxycholic Acid Derivatives Yields a Substantial Increase in TGR5 Receptor Potency
Journal of Medicinal Chemistry 2019.0
Effects of Ursodeoxycholic and Cholic Acid Feeding on Hepatocellular Transporter Expression in Mouse Liver
Gastroenterology 2001.0
Synthesis and Physicochemical, Biological, and Pharmacological Properties of New Bile Acids Amidated with Cyclic Amino Acids
Journal of Medicinal Chemistry 1996.0