Phosphorus–nitrogen compounds. Part 29. Syntheses, crystal structures, spectroscopic and stereogenic properties, electrochemical investigations, antituberculosis, antimicrobial and cytotoxic activities and DNA interactions of ansa-spiro-ansa cyclotetraphosphazenes

European Journal of Medicinal Chemistry
2014.0

Abstract

A number of novel ansa-spiro-ansa (asa) cyclotetraphosphazenes (1a-5b) was prepared in the range of 63-90 % yields. The structures of the compounds were verified by MS, FTIR, (1)H, (13)C{(1)H} and (31)P{(1)H} NMR, heteronuclear single quantum coherence (HSQC), and heteronuclear multiple-bond correlation (HMBC) techniques. The crystal structures of 1b, 2c and 5a were determined by X-ray crystallography. The compound 2c was analyzed by the changes in the (31)P{(1)H}NMR spectrum in addition of the chiral solvating agent; (R)-(+)-2,2,2-trifluoro-1-(9'-anthryl)-ethanol (CSA), to investigate its stereogenic properties. The result supports that compound 2c was found to be in the racemic mixture. Cyclic voltammetric and chronoamperometric data of the mono-ferrocenyl-spiro-asa-cyclotetraphosphazenes exhibited electrochemically reversible one-electron oxidation of Fe redox centres. The mono-ferrocenyl-spiro-asa compounds (3a-5b) were evaluated for antituberculosis activity against reference strain Mycobacterium tuberculosis H37Rv and M. tuberculosis clinical strain, which is resistant to rifampicin and isoniazid. These compounds appear not to be good candidates for being antituberculosis agents to clinical strains. All of the compounds were screened for antibacterial activities against G(+) and G(-) bacteria, and for antifungal activities against yeast strains. They seem to be more active against Gram positive bacteria than Gram negative. The interactions of the phosphazenes with plasmid DNA and the evaluations for cytotoxic activity against MCF-7 breast cancer cell lines were investigated. The compounds 1b, 2b, 3a and 4a were found to be more effective than Cisplatin against MCF-7 breast cancer cell lines at lower concentrations.

Knowledge Graph

Similar Paper

Phosphorus–nitrogen compounds. Part 29. Syntheses, crystal structures, spectroscopic and stereogenic properties, electrochemical investigations, antituberculosis, antimicrobial and cytotoxic activities and DNA interactions of ansa-spiro-ansa cyclotetraphosphazenes
European Journal of Medicinal Chemistry 2014.0
Phosphorus–nitrogen compounds part 27. Syntheses, structural characterizations, antimicrobial and cytotoxic activities, and DNA interactions of new phosphazenes bearing secondary amino and pendant (4-fluorobenzyl)spiro groups
European Journal of Medicinal Chemistry 2013.0
Antitumor activities of some new 1,3,2-oxaza- and 1,3,2-diazaphosphorinanes against K562, MDA-MB-231, and HepG2 cells
Medicinal Chemistry Research 2012.0
Antimycobacterial activity of spirooxindolo-pyrrolidine, pyrrolizine and pyrrolothiazole hybrids obtained by a three-component regio- and stereoselective 1,3-dipolar cycloaddition
MedChemComm 2011.0
Synthesis of spiro-pyrrolizidine: Crystal structure and anticancer activity
Journal of Molecular Structure 2024.0
1,3-Dipolar cycloaddition of C-aryl-N-phenylnitrones to (R)-1-(1-phenylethyl)-3-[(E)-arylmethylidene]tetrahydro-4(1H)-pyridinones: Synthesis and antimycobacterial evaluation of enantiomerically pure spiroisoxazolidines
European Journal of Medicinal Chemistry 2010.0
A highly atom economic, chemo-, regio- and stereoselective synthesis and evaluation of spiro-pyrrolothiazoles as antitubercular agents
Bioorganic & Medicinal Chemistry Letters 2010.0
Efficient synthesis, spectral analysis and antimicrobial studies of nitrogen and sulfur containing spiro heterocycles from 2,4-diaryl-3-azabicyclo[3.3.1]nonan-9-ones
Bioorganic & Medicinal Chemistry Letters 2010.0
Synthesis and anti-tubercular and antimicrobial activities of some 2r,4c-diaryl-3-azabicyclo[3.3.1]nonan-9-one N-isonicotinoylhydrazone derivatives
European Journal of Medicinal Chemistry 2010.0
Synthesis, spectral, and antimicrobial evaluation of some new 8-membered phosphorus heterocyclic compounds
Medicinal Chemistry Research 2011.0