Development and Biological Evaluation of Potent and Selective c-KITD816V Inhibitors

Journal of Medicinal Chemistry
2014.0

Abstract

The c-KIT tyrosine kinase has emerged as a potential therapeutic target for an array of diseases. However, there exists a drug resistance that is caused by mutations in c-KIT; therefore, c-KIT remains as a clinical challenge due to limited effective treatment options for therapies. For example, the acquired activating point mutation D816V significantly impairs the efficacy of targeted cancer therapies. Understanding the mechanisms of drug resistance at the molecular level will aid in designing and developing particular inhibitors with the potential to overcome these resistance mutations. We undertake a structure-based de novo design of 7-azaindole as the molecular core using the modified scoring function. This approach led to an identification of new c-KIT inhibitors over 100-fold specific for the D816V mutant relative to the wild-type c-KIT with nanomolar inhibitory activity. More importantly, these compounds potently inhibit clinically relevant D816V mutations of c-KIT in biochemical and cellular studies.

Knowledge Graph

Similar Paper

Development and Biological Evaluation of Potent and Selective c-KIT<sup>D816V</sup> Inhibitors
Journal of Medicinal Chemistry 2014.0
Targeting Gain of Function and Resistance Mutations in Abl and KIT by Hybrid Compound Design
Journal of Medicinal Chemistry 2013.0
Molecular Modeling of Wild-Type and D816V c-Kit Inhibition Based on ATP-Competitive Binding of Ellipticine Derivatives to Tyrosine Kinases
Journal of Medicinal Chemistry 2005.0
Discovery of Conformational Control Inhibitors Switching off the Activated c-KIT and Targeting a Broad Range of Clinically Relevant c-KIT Mutants
Journal of Medicinal Chemistry 2019.0
Inhibitors to Overcome Secondary Mutations in the Stem Cell Factor Receptor KIT
Journal of Medicinal Chemistry 2017.0
Discovery of (E)-N<sup>1</sup>-(3-Fluorophenyl)-N<sup>3</sup>-(3-(2-(pyridin-2-yl)vinyl)-1H-indazol-6-yl)malonamide (CHMFL-KIT-033) as a Novel c-KIT T670I Mutant Selective Kinase Inhibitor for Gastrointestinal Stromal Tumors (GISTs)
Journal of Medicinal Chemistry 2019.0
Discovery of 2-(4-Chloro-3-(trifluoromethyl)phenyl)-N-(4-((6,7-dimethoxyquinolin-4-yl)oxy)phenyl)acetamide (CHMFL-KIT-64) as a Novel Orally Available Potent Inhibitor against Broad-Spectrum Mutants of c-KIT Kinase for Gastrointestinal Stromal Tumors
Journal of Medicinal Chemistry 2019.0
Discovery of New Benzothiazole-Based Inhibitors of Breakpoint Cluster Region-Abelson Kinase Including the T315I Mutant
Journal of Medicinal Chemistry 2013.0
Discovery of N-((1-(4-(3-(3-((6,7-Dimethoxyquinolin-3-yl)oxy)phenyl)ureido)-2-(trifluoromethyl)phenyl)piperidin-4-yl)methyl)propionamide (CHMFL-KIT-8140) as a Highly Potent Type II Inhibitor Capable of Inhibiting the T670I “Gatekeeper” Mutant of cKIT Kinase
Journal of Medicinal Chemistry 2016.0
Discovery of amido-benzisoxazoles as potent c-Kit inhibitors
Bioorganic &amp; Medicinal Chemistry Letters 2008.0