Synthesis and biological evaluation of new imidazo[2,1-b][1,3,4]thiadiazole-benzimidazole derivatives

European Journal of Medicinal Chemistry
2015.0

Abstract

In this report, we describe the synthesis and biological evaluation of a new series of 2-(imidazo[2,1-b][1,3,4]thiadiazol-5-yl)-1H-benzimidazole derivatives (5a-ac). The molecules were analyzed by (1)H NMR, (13)C NMR, mass spectral and elemental data. The structure of one of the pre-final compounds, 6-(4-methoxyphenyl)-2-(4-methylphenyl)imidazo[2,1-b][1,3,4]thiadiazole-5-carbaldehyde (4d) and that of a target compound, 2-[2-methyl-6-(4-methyl phenyl) imidazo[2,1-b][1,3,4]thiadiazol-5-yl]-1H-benzimidazole (5aa) were confirmed by single crystal XRD studies. All the target compounds were screened for in vitro anti-tuberculosis activity against Mycobacterium tuberculosis H37Rv strain. Seven (5c, 5d, 5l, 5p, 5r, 5z and 5aa) out of twenty nine compounds showed potent anti-tubercular activity with a MIC of 3.125 μg/mL. A p-substituted phenyl group (p-tolyl or p-chlorophenyl) in the imidazo[2,1-b][1,3,4]thiadiazole ring and/or a chloro group in the benzimidazole ring enhance anti-tuberculosis activity whereas a nitro group in the benzimidazole ring reduces the activity. In the antibacterial screening, compounds 5i, 5w and 5ac showed promising activity against the tested bacterial strains. Further, antifungal and antioxidant activities of these molecules were also investigated. In the cytotoxicity study, the active antitubercular compounds exhibited very low toxicity against a normal cell line.

Knowledge Graph

Similar Paper

Synthesis and biological evaluation of new imidazo[2,1-b][1,3,4]thiadiazole-benzimidazole derivatives
European Journal of Medicinal Chemistry 2015.0
Synthesis and evaluation of antibacterial and antitubercular activities of some novel imidazo[2,1-b][1,3,4]thiadiazole derivatives
Medicinal Chemistry Research 2013.0
Synthesis, spectral studies and biological evaluation of a novel series of 2-substituted-5,6-diarylsubstituted imidazo(2,1-b)-1,3,4-thiadiazole derivatives as possible anti-tubercular agents
Medicinal Chemistry Research 2012.0
Synthesis and antimicrobial activity evaluation of new 1,2,4-triazoles and 1,3,4-thiadiazoles bearing imidazo[2,1-b]thiazole moiety
European Journal of Medicinal Chemistry 2010.0
Synthesis and evaluation of in vitro antimycobacterial activity of novel 1H-benzo[d]imidazole derivatives and analogues
European Journal of Medicinal Chemistry 2015.0
Synthesis and biological evaluation of novel substituted 1,3,4-thiadiazole and 2,6-di aryl substituted imidazo [2,1-b] [1,3,4] thiadiazole derivatives
European Journal of Medicinal Chemistry 2014.0
Novel 2-(2-phenalkyl)-1H-benzo[d]imidazoles as antitubercular agents. Synthesis, biological evaluation and structure–activity relationship
Bioorganic & Medicinal Chemistry 2015.0
One-pot synthesis of new triazole—Imidazo[2,1-b][1,3,4]thiadiazole hybrids via click chemistry and evaluation of their antitubercular activity
Bioorganic & Medicinal Chemistry Letters 2015.0
Novel imidazo[2,1-b][1,3,4]thiadiazole carrying rhodanine-3-acetic acid as potential antitubercular agents
Bioorganic & Medicinal Chemistry Letters 2012.0
Design, synthesis, andin vitrobiological evaluation of novel benzimidazole tethered allylidenehydrazinylmethylthiazole derivatives as potent inhibitors ofMycobacterium tuberculosis
MedChemComm 2018.0