Boronic species as promising inhibitors of the Staphylococcus aureus NorA efflux pump: Study of 6-substituted pyridine-3-boronic acid derivatives

European Journal of Medicinal Chemistry
2015.0

Abstract

In response to the extensive use of antibiotics, bacteria have evolved numerous mechanisms of defense against antimicrobial agents. Among them, extrusion of the antimicrobial agents outside the bacterial cell through efflux pumps is a major cause of concern. At first limited to one or few structurally-related antibiotics, bacterial resistance have then progressed towards cross-resistance between different classes of antibiotics, leading to multidrug-resistant microorganisms. Emergence of these pathogens requires development of novel therapeutic strategies and inhibition of efflux pumps appears to be a promising strategy that could restore the potency of existing antibiotics. NorA is the most studied chromosomal efflux pump of Staphylococcus aureus; it is known to be implied in resistance of Methicillin-resistant S. aureus (MRSA) strains against a wide range of unrelated substrates, including hydrophilic fluoroquinolones. Starting from 6-benzyloxypyridine-3-boronic acid I that we previously identified as a potential inhibitor of the NorA efflux pump against the NorA-overexpressing S. aureus 1199B strain (SA1199B), we describe here the synthesis and biological evaluation of a series of 6-(aryl)alkoxypyridine-3-boronic acids. 6-(3-Phenylpropoxy)pyridine-3-boronic acid 3i and 6-(4-phenylbutoxy)pyridine-3-boronic acid 3j were found to potentiate ciprofloxacin activity by a 4-fold increase compared to the parent compound I. In addition, it has been shown that both compounds promote Ethidium Bromide (EtBr) accumulation in SA1199B, thus corroborating their potential mode of action as NorA inhibitors.

Knowledge Graph

Similar Paper

Boronic species as promising inhibitors of the Staphylococcus aureus NorA efflux pump: Study of 6-substituted pyridine-3-boronic acid derivatives
European Journal of Medicinal Chemistry 2015.0
First Identification of Boronic Species as Novel Potential Inhibitors of the Staphylococcus aureus NorA Efflux Pump
Journal of Medicinal Chemistry 2014.0
From Phenothiazine to 3-Phenyl-1,4-benzothiazine Derivatives as Inhibitors of theStaphylococcus aureusNorA Multidrug Efflux Pump
Journal of Medicinal Chemistry 2008.0
Studies on 2-phenylquinoline Staphylococcus aureus NorA efflux pump inhibitors: New insights on the C-6 position
European Journal of Medicinal Chemistry 2018.0
Evolution from a Natural Flavones Nucleus to Obtain 2-(4-Propoxyphenyl)quinoline Derivatives As Potent Inhibitors of the S. aureus NorA Efflux Pump
Journal of Medicinal Chemistry 2011.0
Re-evolution of the 2-Phenylquinolines: Ligand-Based Design, Synthesis, and Biological Evaluation of a Potent New Class of Staphylococcus aureus NorA Efflux Pump Inhibitors to Combat Antimicrobial Resistance
Journal of Medicinal Chemistry 2013.0
Synthesis of amides from (E)-3-(1-chloro-3,4-dihydronaphthalen-2-yl)acrylic acid and substituted amino acid esters as NorA efflux pump inhibitors of Staphylococcus aureus
Bioorganic & Medicinal Chemistry 2019.0
2-Phenylquinoline S. aureus NorA Efflux Pump Inhibitors: Evaluation of the Importance of Methoxy Group Introduction
Journal of Medicinal Chemistry 2018.0
Inhibition of the NorA efflux pump of S. aureus by (Z)-5-(4-Fluorobenzylidene)-Imidazolidines
Bioorganic & Medicinal Chemistry Letters 2021.0
From 6-Aminoquinolone Antibacterials to 6-Amino-7-thiopyranopyridinylquinolone Ethyl Esters as Inhibitors of Staphylococcus aureus Multidrug Efflux Pumps
Journal of Medicinal Chemistry 2010.0