Combined Contributions of Impaired Hepatic CYP2C11 and Intestinal Breast Cancer Resistance Protein Activities and Expression to Increased Oral Glibenclamide Exposure in Rats with Streptozotocin-Induced Diabetes Mellitus

Drug Metabolism and Disposition
2012.0

Abstract

The purpose of this study was to evaluate the contributions of impaired cytochrome P450 and breast cancer resistance protein (BCRP) activity and expression to drug pharmacokinetics under diabetic conditions. Diabetes was induced in rats with the intraperitoneal administration of streptozocin. Glibenclamide (GLB), a substrate of BCRP, served as a model drug. The pharmacokinetics of orally administered GLB (10 mg/kg) were studied. The results showed that diabetes mellitus significantly increased exposure (area under the curve and peak concentration) to GLB after oral administration. Data from hepatic microsomes suggested impairment of GLB metabolism in diabetic rats. GLB metabolism in hepatic microsomes was significantly inhibited by a selective inhibitor (sulfaphenazole) of CYP2C11 and an anti-CYP2C11 antibody. Western blotting further indicated the contribution of impaired CYP2C11 expression to the impairment of GLB metabolism. Excretion data showed that ∼72% of the orally administered dose was excreted in the feces of normal rats, which indicates an important role for intestinal BCRP. Diabetes significantly decreased the recovery from feces, which was only 40% of the orally administered dose. Results from in situ, single-pass, intestinal perfusion experiments revealed that diabetes significantly increased the apparent effective permeability and decreased the efflux of GLB through the intestine; this suggests impairment of intestinal BCRP function, which may play a role in the increased exposure to orally administered GLB in diabetic rats. Insulin treatment partly or completely reversed the changes in diabetic rats. All results yielded the conclusion that impaired hepatic CYP2C11 and intestinal BCRP expression and activity induced by diabetes contributed to the increased exposure of orally administered GLB.

Knowledge Graph

Similar Paper

Combined Contributions of Impaired Hepatic CYP2C11 and Intestinal Breast Cancer Resistance Protein Activities and Expression to Increased Oral Glibenclamide Exposure in Rats with Streptozotocin-Induced Diabetes Mellitus
Drug Metabolism and Disposition 2012.0
Opposite Effect of Diabetes Mellitus Induced by Streptozotocin on Oral and Intravenous Pharmacokinetics of Verapamil in Rats
Drug Metabolism and Disposition 2011.0
The sulphonylurea glibenclamide inhibits multidrug resistance protein (MRP1) activity in human lung cancer cells
British Journal of Pharmacology 2001.0
Inhibitory effect of anti-diabetic agents on rat organic anion transporter rOAT1
European Journal of Pharmacology 2000.0
Transport of Glyburide by Placental ABC Transporters: Implications in Fetal Drug Exposure
Placenta 2006.0
P-glycoprotein inhibition by glibenclamide and related compounds
Pfl�gers Archiv European Journal of Physiology 1999.0
Effect of Cisplatin-Induced Acute Renal Failure on Bioavailability and Intestinal Secretion of Quinolone Antibacterial Drugs in Rats
Pharmaceutical Research 2004.0
Diabetes Mellitus Reduces Activity of Human UDP-Glucuronosyltransferase 2B7 in Liver and Kidney Leading to Decreased Formation of Mycophenolic Acid Acyl-Glucuronide Metabolite
Drug Metabolism and Disposition 2011.0
Effects of glibenclamide on glycylsarcosine transport by the rat peptide transporters PEPT1 and PEPT2
British Journal of Pharmacology 1999.0
Design, synthesis, and structure–activity relationships of a series of 4-benzyl-5-isopropyl-1H-pyrazol-3-yl β-d-glycopyranosides substituted with novel hydrophilic groups as highly potent inhibitors of sodium glucose co-transporter 1 (SGLT1)
Bioorganic & Medicinal Chemistry 2013.0