Structure and inhibition studies of a type II beta-carbonic anhydrase psCA3 from Pseudomonas aeruginosa

Bioorganic & Medicinal Chemistry
2015.0

Abstract

Carbonic anhydrases (CAs) are metallo-enzymes that catalyze the reversible hydration of carbon dioxide into bicarbonate and a proton. The β-class CAs (β-CAs) are expressed in prokaryotes, fungi, plants, and more recently have been isolated in some animals. The β-CA class is divided into two subclasses, termed type I and II, defined by pH catalytic activity profile and active site structural configuration. Type I β-CAs display catalytic activity over a broad pH range (6.5-9.0) with the active site zinc tetrahedrally coordinated by three amino acids and a hydroxide/water. In contrast, type II β-CAs are catalytically active only at a pH 8 and higher where they adopt a functional active site configuration like that of type I. However, below pH 8 they are conformationally self-inactivated by the addition of a fourth amino acid coordinating the zinc and thereby displacing the zinc bound solvent. We have determined the structure of psCA3, a type II β-CA, isolated from Pseudomonas aeruginosa (P. aeruginosa) PAO1 at pH 8.3, in its open active state to a resolution of 1.9 Å. The active site zinc is coordinated by Cys42, His98, Cys101 and a water/hydroxide molecule. P. aeruginosa is a multi-drug resistant bacterium and displays intrinsic resistance to most of the currently used antibiotics; therefore, there is a need for new antibacterial targets. Kinetic data confirm that psCA3 belongs to the type II subclass and that sulfamide, sulfamic acid, phenylboronic acid and phenylarsonic acid are micromolar inhibitors. In vivo studies identified that among six tested inhibitors representing sulfonamides, inorganic anions, and small molecules, acetazolamide has the most significant dose-dependent inhibitory effect on P. aeruginosa growth.

Knowledge Graph

Similar Paper

Structure and inhibition studies of a type II beta-carbonic anhydrase psCA3 from Pseudomonas aeruginosa
Bioorganic & Medicinal Chemistry 2015.0
Comparison of the anion inhibition profiles of the β- and γ-carbonic anhydrases from the pathogenic bacterium Burkholderia pseudomallei
Bioorganic & Medicinal Chemistry 2017.0
Inhibition of the β-carbonic anhydrase from Streptococcus pneumoniae by inorganic anions and small molecules: Toward innovative drug design of antiinfectives?
Bioorganic & Medicinal Chemistry 2011.0
Inhibition studies with anions and small molecules of two novel β-carbonic anhydrases from the bacterial pathogen Salmonella enterica serovar Typhimurium
Bioorganic & Medicinal Chemistry Letters 2011.0
Anion inhibition study of the β-class carbonic anhydrase (PgiCAb) from the oral pathogen Porphyromonas gingivalis
Bioorganic & Medicinal Chemistry Letters 2014.0
Sulfonamide inhibition studies of two β-carbonic anhydrases from the bacterial pathogen Legionella pneumophila
Bioorganic & Medicinal Chemistry 2014.0
Carbonic anhydrase inhibitors: Inhibition of human, bacterial, and archaeal isozymes with benzene-1,3-disulfonamides—Solution and crystallographic studies
Bioorganic & Medicinal Chemistry Letters 2007.0
A new β-carbonic anhydrase from Brucella suis, its cloning, characterization, and inhibition with sulfonamides and sulfamates, leading to impaired pathogen growth
Bioorganic & Medicinal Chemistry 2011.0
Sulfonamide inhibition studies of the γ-carbonic anhydrase from the Antarctic bacterium Pseudoalteromonas haloplanktis
Bioorganic & Medicinal Chemistry Letters 2015.0
Anion inhibition profiles of the γ-carbonic anhydrase from the pathogenic bacterium Burkholderia pseudomallei responsible of melioidosis and highly drug resistant to common antibiotics
Bioorganic & Medicinal Chemistry 2017.0