Discovery of Novel Multifunctional Ligands with μ/δ Opioid Agonist/Neurokinin-1 (NK1) Antagonist Activities for the Treatment of Pain

Journal of Medicinal Chemistry
2015.0

Abstract

Multifunctional ligands with agonist bioactivities at μ/δ opioid receptors (MOR/DOR) and antagonist bioactivity at the neurokinin-1 receptor (NK1R) have been designed and synthesized. These peptide-based ligands are anticipated to produce better biological profiles (e.g., higher analgesic effect with significantly less adverse side effects) compared to those of existing drugs and to deliver better synergistic effects than coadministration of a mixture of multiple drugs. A systematic structure-activity relationship (SAR) study has been conducted to find multifunctional ligands with desired activities at three receptors. It has been found that introduction of Dmt (2,6-dimethyl-tyrosine) at the first position and NMePhe at the fourth position (ligand 3: H-Dmt-d-Ala-Gly-NMePhe-Pro-Leu-Trp-NH-Bn(3',5'-(CF3)2)) displays binding as well as functional selectivity for MOR over DOR while maintaining efficacy, potency, and antagonist activity at the NK1R. Dmt at the first position with Phe(4-F) at the fourth position (ligand 5: H-Dmt-d-Ala-Gly-Phe(4-F)-Pro-Leu-Trp-NH-Bn(3',5'-(CF3)2)) exhibits balanced binding affinities at MOR and DOR though it has higher agonist activity at DOR over MOR. This study has led to the discovery of several novel ligands including 3 and 5 with excellent in vitro biological activity profiles. Metabolic stability studies in rat plasma with ligands 3, 5, and 7 (H-Tyr-d-Ala-Gly-Phe(4-F)-Pro-Leu-Trp-NH-Bn(3',5'-(CF3)2)) showed that their stability depends on modifications at the first and fourth positions (3: T1/2 > 24 h; 5: T1/2 ≈ 6 h; 7: T1/2 > 2 h). Preliminary in vivo studies with these two ligands have shown promising antinociceptive activity.

Knowledge Graph

Similar Paper

Discovery of Novel Multifunctional Ligands with μ/δ Opioid Agonist/Neurokinin-1 (NK1) Antagonist Activities for the Treatment of Pain
Journal of Medicinal Chemistry 2015.0
Discovery of a Potent and Efficacious Peptide Derivative for δ/μ Opioid Agonist/Neurokinin 1 Antagonist Activity with a 2′,6′-Dimethyl-<scp>l</scp>-Tyrosine: In vitro, In vivo, and NMR-Based Structural Studies
Journal of Medicinal Chemistry 2011.0
Design, Synthesis, and Biological Evaluation of Novel Bifunctional C-Terminal-Modified Peptides for δ/μ Opioid Receptor Agonists and Neurokinin-1 Receptor Antagonists
Journal of Medicinal Chemistry 2007.0
Synthesis and biological evaluation of compact, conformationally constrained bifunctional opioid agonist – Neurokinin-1 antagonist peptidomimetics
European Journal of Medicinal Chemistry 2015.0
Development of Potent μ and δ Opioid Agonists with High Lipophilicity
Journal of Medicinal Chemistry 2011.0
Further Optimization and Evaluation of Bioavailable, Mixed-Efficacy μ-Opioid Receptor (MOR) Agonists/δ-Opioid Receptor (DOR) Antagonists: Balancing MOR and DOR Affinities
Journal of Medicinal Chemistry 2015.0
Superpotent [Dmt<sup>1</sup>]Dermorphin Tetrapeptides Containing the 4-Aminotetrahydro-2-benzazepin-3-one Scaffold with Mixed μ/δ Opioid Receptor Agonistic Properties
Journal of Medicinal Chemistry 2011.0
C-terminal modified Enkephalin-like tetrapeptides with enhanced affinities at the kappa opioid receptor and monoamine transporters
Bioorganic &amp; Medicinal Chemistry 2021.0
A Structure–Activity Relationship Study and Combinatorial Synthetic Approach of C-Terminal Modified Bifunctional Peptides That Are δ/μ Opioid Receptor Agonists and Neurokinin 1 Receptor Antagonists
Journal of Medicinal Chemistry 2008.0
Opioid Peptidomimetics: Leads for the Design of Bioavailable Mixed Efficacy μ Opioid Receptor (MOR) Agonist/δ Opioid Receptor (DOR) Antagonist Ligands
Journal of Medicinal Chemistry 2013.0