Recent advances in the development of dual VEGFR and c-Met small molecule inhibitors as anticancer drugs

European Journal of Medicinal Chemistry
2016.0

Abstract

Vascular endothelial growth factor receptor (VEGFR) is a very important receptor tyrosine kinase (RTK) that can induce angiogenesis, increase cell growth and metastasis, reduce apoptosis, alter cytoskeletal function, and affect other biologic changes. Moreover, it is identified to be deregulated in varieties of human cancers. Therefore, VEGFR turn out to be a remarkable target of significant types of anticancer drugs in clinical trials. On the other side, c-Met is the receptor of hepatocyte growth factor (HGF) and a receptor tyrosine kinase. Previous studies have shown that c-Met elicits many different signaling pathways mediating cell proliferation, migration, differentiation, and survival. Furthermore, the correlation between aberrant signaling of the HGF/c-Met pathway and aggressive tumor growth, poor prognosis in cancer patients has been established. Recent reports had shown that c-Met/HGF and VEGFR/VEGF (vascular endothelial growth factor) can act synergistically in the progression of many diseases. They were also found to be over expressed in many human cancers. Thus, in a variety of malignancies, VEGFR and c-Met receptor tyrosine kinases have acted as therapeutic targets. With the development of molecular biology techniques, further understanding of the human tumor disease pathogenesis and interrelated signaling pathways known to tumor cells, using a single target inhibitors have been difficult to achieve the desired therapeutic effect. At this point, with respect to the combination of two inhibitors, a single compound which is able to inhibit both VEGFR and c-Met may put forward the advantage of raising anticancer activity. With the strong interest in these compounds, this review represents a renewal of previous works on the development of dual VEGFR and c-Met small molecule inhibitors as novel anti-cancer agents. Newly collection derivatives have been mainly describing in their biological profiles and chemical structures.

Knowledge Graph

Similar Paper

Recent advances in the development of dual VEGFR and c-Met small molecule inhibitors as anticancer drugs
European Journal of Medicinal Chemistry 2016.0
Design and discovery of 4-anilinoquinazoline-acylamino derivatives as EGFR and VEGFR-2 dual TK inhibitors
European Journal of Medicinal Chemistry 2016.0
Discovery of Dual VEGFR-2 and Tubulin Inhibitors with in Vivo Efficacy
ACS Medicinal Chemistry Letters 2010.0
N-(4-(6,7-Disubstituted-quinolin-4-yloxy)-3-fluorophenyl)-2-oxo-3-phenylimidazolidine-1-carboxamides: A novel series of dual c-Met/VEGFR2 receptor tyrosine kinase inhibitors
Bioorganic & Medicinal Chemistry Letters 2009.0
N-(3-fluoro-4-(2-arylthieno[3,2-b]pyridin-7-yloxy)phenyl)-2-oxo-3-phenylimidazolidine-1-carboxamides: A novel series of dual c-Met/VEGFR2 receptor tyrosine kinase inhibitors
Bioorganic & Medicinal Chemistry Letters 2009.0
Discovery of dual Axl/VEGF-R2 inhibitors as potential anti-angiogenic and anti-metastatic drugs for cancer chemotherapy
Bioorganic & Medicinal Chemistry Letters 2017.0
Novel Potent Orally Active Multitargeted Receptor Tyrosine Kinase Inhibitors: Synthesis, Structure−Activity Relationships, and Antitumor Activities of 2-Indolinone Derivatives
Journal of Medicinal Chemistry 2010.0
Discovery of novel VEGFR-2 inhibitors embedding 6,7-dimethoxyquinazoline and diarylamide fragments
Bioorganic & Medicinal Chemistry Letters 2021.0
Multi-target weapons: diaryl-pyrazoline thiazolidinediones simultaneously targeting VEGFR-2 and HDAC cancer hallmarks
RSC Medicinal Chemistry 2021.0
Discovery of a novel and potent series of thieno[3,2-b]pyridine-based inhibitors of c-Met and VEGFR2 tyrosine kinases
Bioorganic & Medicinal Chemistry Letters 2008.0