Structure-Based Design and Synthesis of 3-Amino-1,5-dihydro-4H-pyrazolopyridin-4-one Derivatives as Tyrosine Kinase 2 Inhibitors

Journal of Medicinal Chemistry
2016.0

Abstract

We report herein the discovery and optimization of 3-amino-1,5-dihydro-4H-pyrazolopyridin-4-one TYK2 inhibitors. High-throughput screening against TYK2 and JAK1-3 provided aminoindazole derivative 1 as a hit compound. Scaffold hopping of the aminoindazole core led to the discovery of 3-amino-1,5-dihydro-4H-pyrazolopyridin-4-one derivative 3 as a novel chemotype of TYK2 inhibitors. Interestingly, initial SAR study suggested that this scaffold could have a vertically flipped binding mode, which prompted us to introduce a substituent at the 7-position as a moiety directed toward the solvent-exposed region. Introduction of a 1-methyl-3-pyrazolyl moiety at the 7-position resulted in a dramatic increase in TYK2 inhibitory activity, and further optimization led to the discovery of 20. Compound 20 inhibited IL-23-induced IL-22 production in a rat PD assay, as well as inhibited IL-23 signaling in human PBMC. Furthermore, 20 showed selectivity for IL-23 signaling inhibition against GM-CSF, demonstrating the unique cytokine selectivity of the novel TYK2 inhibitor.

Knowledge Graph

Similar Paper

Structure-Based Design and Synthesis of 3-Amino-1,5-dihydro-4H-pyrazolopyridin-4-one Derivatives as Tyrosine Kinase 2 Inhibitors
Journal of Medicinal Chemistry 2016.0
Discovery and Structure−Activity Relationship of 3-Aminopyrid-2-ones as Potent and Selective Interleukin-2 Inducible T-Cell Kinase (Itk) Inhibitors
Journal of Medicinal Chemistry 2011.0
Discovery of novel selective Janus kinase 2 (JAK2) inhibitors bearing a 1H-pyrazolo[3,4-d]pyrimidin-4-amino scaffold
Bioorganic & Medicinal Chemistry 2019.0
Design, synthesis and structure-activity relationship study of aminopyridine derivatives as novel inhibitors of Janus kinase 2
Bioorganic & Medicinal Chemistry Letters 2019.0
Discovery and evaluation of 3-phenyl-1H-5-pyrazolylamine-based derivatives as potent, selective and efficacious inhibitors of FMS-like tyrosine kinase-3 (FLT3)
Bioorganic & Medicinal Chemistry 2011.0
Rational design, synthesis, and structure–activity relationships of 5-amino-1H-pyrazole-4-carboxylic acid derivatives as protein tyrosine phosphatase 1B inhibitors
Bioorganic & Medicinal Chemistry 2017.0
Inhibition of PDGFR tyrosine kinase activity by a series of novel N-(3-(4-(pyridin-3-yl)-1H-imidazol-2-ylamino)phenyl)amides – A SAR study on the bioisosterism of pyrimidine and imidazole
European Journal of Medicinal Chemistry 2008.0
Novel azulene-based derivatives as potent multi-receptor tyrosine kinase inhibitors
Bioorganic & Medicinal Chemistry Letters 2010.0
Mitogen-Activated Protein Kinase-Activated Protein Kinase 2 (MAPKAP-K2) as an Antiinflammatory Target: Discovery and in Vivo Activity of Selective Pyrazolo[1,5-a]pyrimidine Inhibitors Using a Focused Library and Structure-Based Optimization Approach
Journal of Medicinal Chemistry 2012.0
Design, synthesis, and biological activity of phenyl-pyrazole derivatives as BCR–ABL kinase inhibitors
Bioorganic & Medicinal Chemistry 2015.0