New quinoline derivatives as nicotinic receptor modulators

European Journal of Medicinal Chemistry
2016.0

Abstract

As a continuation of previous work on quinoline derivatives, which showed some preference (2-3 times) for the α7 with respect to α4β2 acetylcholine nicotinic receptors (nAChRs), we synthesized a series of novel azabicyclic or diazabicyclic compounds carrying a quinoline or isoquinoline ring, with the aim of searching for more selective α7 nAChR compounds. Radioligand binding studies on α7* and α4β2* nAChRs (rat brain homogenate) revealed one compound (7) with a 2-fold higher affinity for the α4β2*-subtype, and four compounds (11, 13, 14 and 16) with at least 3-fold higher affinity for α7* nAChR. The most promising was 11, showing Ki∼100 nM and over 10-fold selectivity for α7* nAChR. Compounds 7, 11, 13 and 16 at 50 μM suppressed ion currents induced in the rat α4β2 nAChR and the chimeric nAChR composed of the ligand-binding domain of the chick α7 and transmembrane domain of the α1 glycine receptor, expressed in Xenopus oocytes. Calcium imaging experiments on the human α7 nAChR expressed in the Neuro2a cells and potentiated by PNU-120596 confirmed the antagonistic activity for 7; on the contrary, 11, 13 and 16 were agonists with the EC50 values in the range of 1.0-1.6 μM. Thus, the introduced modifications allowed us to enhance the selectivity of quinolines towards α7 nAChR and to get novel compounds with agonistic activity.

Knowledge Graph

Similar Paper

New quinoline derivatives as nicotinic receptor modulators
European Journal of Medicinal Chemistry 2016.0
Design, Synthesis, and Preliminary Pharmacological Evaluation of New Quinoline Derivatives as Nicotinic Ligands
Journal of Medicinal Chemistry 2007.0
bis-Azaaromatic quaternary ammonium analogues: ligands for α4β2* and α7* subtypes of neuronal nicotinic receptors
Bioorganic & Medicinal Chemistry Letters 2002.0
Novel N-aryl nicotinamide derivatives: Taking stock on 3,6-diazabicyclo[3.1.1]heptanes as ligands for neuronal acetylcholine receptors
European Journal of Medicinal Chemistry 2019.0
Design of novel 3,6-diazabicyclo[3.1.1]heptane derivatives with potent and selective affinities for α4β2 neuronal nicotinic acetylcholine receptors
European Journal of Medicinal Chemistry 2015.0
2-(Arylmethyl)-3-substituted quinuclidines as selective α7 nicotinic receptor ligands
Bioorganic & Medicinal Chemistry Letters 2005.0
Pyridinyl- and pyridazinyl-3,6-diazabicyclo[3.1.1]heptane-anilines: Novel selective ligands with subnanomolar affinity for α4β2 nACh receptors
European Journal of Medicinal Chemistry 2018.0
7-Azaindole derivatives as potential partial nicotinic agonists
Bioorganic & Medicinal Chemistry Letters 2008.0
New Rigid Nicotine Analogues, Carrying a Norbornane Moiety, Are Potent Agonists of α7 and α3* Nicotinic Receptors
Journal of Medicinal Chemistry 2019.0
Modification of the anabaseine pyridine nucleus allows achieving binding and functional selectivity for the α3β4 nicotinic acetylcholine receptor subtype
European Journal of Medicinal Chemistry 2016.0