Pterostilbene-O-acetamidoalkylbenzylamines derivatives as novel dual inhibitors of cholinesterase with anti-β-amyloid aggregation and antioxidant properties for the treatment of Alzheimer’s disease

Bioorganic & Medicinal Chemistry Letters
2016.0

Abstract

A series of pterostilbene-O-acetamidoalkylbenzylamines were designed, synthesized and evaluated as dual inhibitors of AChE and BuChE. To further explore the multifunctional properties of the new derivatives, their antioxidant activities and inhibitory effects on self-induced Aβ1-42 aggregation and HuAChE-induced Aβ1-40 aggregation were also tested. The results showed that most of these compounds could effectively inhibit AChE and BuChE. Particularly, compound 21d exhibited the best AChE inhibitory activity (IC50=0.06 μM) and good inhibition of BuChE (IC50=28.04 μM). Both the inhibition kinetic analysis and molecular modeling study revealed that these compounds showed mixed-type inhibition, binding simultaneously to the CAS and PAS of AChE. In addition to cholinesterase inhibitory activities, these compounds showed different levels of antioxidant activity. However, the inhibitory activities against self-induced and HuAChE-induced Aβ aggregation of these new derivatives were unsatisfied. Taking into account the results of the biological evaluation, further modifications will be designed in order to increase the potency on the different targets. The results displayed in this Letter can be a new starting point for further development of multifunctional agents for Alzheimer's disease.

Knowledge Graph

Similar Paper

Pterostilbene-O-acetamidoalkylbenzylamines derivatives as novel dual inhibitors of cholinesterase with anti-β-amyloid aggregation and antioxidant properties for the treatment of Alzheimer’s disease
Bioorganic & Medicinal Chemistry Letters 2016.0
Benzophenone-based derivatives: A novel series of potent and selective dual inhibitors of acetylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation
European Journal of Medicinal Chemistry 2011.0
Design, synthesis and evaluation of 4-dimethylamine flavonoid derivatives as potential multifunctional anti-Alzheimer agents
European Journal of Medicinal Chemistry 2016.0
Synthesis, biological evaluation and molecular modeling of new tetrahydroacridine derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2015.0
Design, synthesis, and evaluation of novel N-(4-phenoxybenzyl)aniline derivatives targeting acetylcholinesterase, β-amyloid aggregation and oxidative stress to treat Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2019.0
Design, synthesis and biological activity of novel donepezil derivatives bearing N -benzyl pyridinium moiety as potent and dual binding site acetylcholinesterase inhibitors
European Journal of Medicinal Chemistry 2017.0
Synthesis, in vitro assay, and molecular modeling of new piperidine derivatives having dual inhibitory potency against acetylcholinesterase and Aβ1–42 aggregation for Alzheimer’s disease therapeutics
Bioorganic & Medicinal Chemistry 2007.0
Design, synthesis and evaluation of flavonoid derivatives as potential multifunctional acetylcholinesterase inhibitors against Alzheimer’s disease
Bioorganic & Medicinal Chemistry Letters 2013.0
Multifunctional 5,6-dimethoxybenzo[d]isothiazol-3(2H)-one-N-alkylbenzylamine derivatives with acetylcholinesterase, monoamine oxidases and β-amyloid aggregation inhibitory activities as potential agents against Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2018.0
Multifunctional thioxanthone derivatives with acetylcholinesterase, monoamine oxidases and β -amyloid aggregation inhibitory activities as potential agents against Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2017.0