Antichagasic and trichomonacidal activity of 1-substituted 2-benzyl-5-nitroindazolin-3-ones and 3-alkoxy-2-benzyl-5-nitro-2H-indazoles

European Journal of Medicinal Chemistry
2016.0

Abstract

Two series of new 5-nitroindazole derivatives, 1-substituted 2-benzylindazolin-3-ones (6-29, series A) and 3-alkoxy-2-benzyl-2H-indazoles (30-37, series B), containing differently functionalized chains at position 1 and 3, respectively, have been synthesized starting from 2-benzyl-5-nitroindazolin-3-one 5, and evaluated against the protozoan parasites Trypanosoma cruzi and Trichomonas vaginalis, etiological agents of Chagas disease and trichomonosis, respectively. Many indazolinones of series A were efficient against different morphological forms of T. cruzi CL Brener strain (compounds 6, 7, 9, 10 and 19-21: IC50 = 1.58-4.19 μM for epimastigotes; compounds 6, 19-21 and 24: IC50 = 0.22-0.54 μM for amastigotes) being as potent as the reference drug benznidazole. SAR analysis suggests that electron-donating groups at position 1 of indazolinone ring are associated with an improved antichagasic activity. Moreover, compounds of series A displayed low unspecific toxicities against an in vitro model of mammalian cells (fibroblasts), which were reflected in high values of the selectivity indexes (SI). Compound 20 was also very efficient against amastigotes from Tulahuen and Y strains of T. cruzi (IC50 = 0.81 and 0.60 μM, respectively), showing low toxicity towards cardiac cells (LC50 > 100 μM). In what concerns compounds of series B, some of them displayed moderate activity against trophozoites of a metronidazole-sensitive isolate of T. vaginalis (35 and 36: IC50 = 9.82 and 7.25 μM, respectively), with low unspecific toxicity towards Vero cells. Compound 36 was also active against a metronidazole-resistant isolate (IC50 = 9.11 μM) and can thus be considered a good prototype for the development of drugs directed to T. vaginalis resistant to 5-nitroimidazoles.

Knowledge Graph

Similar Paper

Antichagasic and trichomonacidal activity of 1-substituted 2-benzyl-5-nitroindazolin-3-ones and 3-alkoxy-2-benzyl-5-nitro-2H-indazoles
European Journal of Medicinal Chemistry 2016.0
New perspectives on the synthesis and antichagasic activity of 3-alkoxy-1-alkyl-5-nitroindazoles
European Journal of Medicinal Chemistry 2014.0
Synthesis, biological evaluation and chemometric analysis of indazole derivatives. 1,2-Disubstituted 5-nitroindazolinones, new prototypes of antichagasic drug
European Journal of Medicinal Chemistry 2012.0
Novel 3-nitro-1H-1,2,4-triazole-based piperazines and 2-amino-1,3-benzothiazoles as antichagasic agents
Bioorganic & Medicinal Chemistry 2013.0
Promising hit compounds against resistant trichomoniasis: Synthesis and antiparasitic activity of 3-(ω-aminoalkoxy)-1-benzyl-5-nitroindazoles
Bioorganic & Medicinal Chemistry Letters 2021.0
In vitro and in vivo antitrypanosomatid activity of 5-nitroindazoles
European Journal of Medicinal Chemistry 2009.0
New potent 5-nitroindazole derivatives as inhibitors of Trypanosoma cruzi growth: Synthesis, biological evaluation, and mechanism of action studies
Bioorganic & Medicinal Chemistry 2009.0
Novel nitro(triazole/imidazole)-based heteroarylamides/sulfonamides as potential antitrypanosomal agents
European Journal of Medicinal Chemistry 2014.0
Novel 3-Nitro-1H-1,2,4-triazole-Based Aliphatic and Aromatic Amines as Anti-Chagasic Agents
Journal of Medicinal Chemistry 2011.0
3-Nitrotriazole-based piperazides as potent antitrypanosomal agents
European Journal of Medicinal Chemistry 2015.0