Design and development of new class of Mycobacterium tuberculosis l-alanine dehydrogenase inhibitors

Bioorganic & Medicinal Chemistry
2016.0

Abstract

Mycobacterium tuberculosisl-alanine dehydrogenase (MTB l-AlaDH) is one of the important drug targets for treating latent/persistent tuberculosis. In this study we used crystal structure of the MTB l-AlaDH bound with cofactor NAD(+) as a structural framework for virtual screening of our in-house database to identified new classes of l-AlaDH inhibitor. We identified azetidine-2,4-dicarboxamide derivative as one of the potent inhibitor with IC50 of 9.22±0.72μM. Further lead optimization by synthesis leads to compound 1-(isonicotinamido)-N(2),N(4)-bis(benzo[d]thiazol-2-yl)azetidine-2,4-dicarboxamide (18) with l-AlaDH IC50 of 3.83±0.12μM, 2.0log reduction in nutrient starved dormant MTB model and MIC of 11.81μM in actively replicative MTB.

Knowledge Graph

Similar Paper

Design and development of new class of Mycobacterium tuberculosis l-alanine dehydrogenase inhibitors
Bioorganic & Medicinal Chemistry 2016.0
Design and development of novel Mycobacterium tuberculosis l-alanine dehydrogenase inhibitors
European Journal of Medicinal Chemistry 2015.0
Mycobacterium tuberculosis lysine-ɛ-aminotransferase a potential target in dormancy: Benzothiazole based inhibitors
Bioorganic & Medicinal Chemistry 2017.0
Development of benzo[d]oxazol-2(3H)-ones derivatives as novel inhibitors of Mycobacterium tuberculosis InhA
Bioorganic & Medicinal Chemistry 2014.0
2-(2-Hydrazinyl)thiazole derivatives: Design, synthesis and in vitro antimycobacterial studies
European Journal of Medicinal Chemistry 2013.0
Inhibition of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase from Mycobacterium tuberculosis: In silico screening and in vitro validation
European Journal of Medicinal Chemistry 2015.0
Design, synthesis and biological activity of novel substituted 3-benzoic acid derivatives as MtDHFR inhibitors
Bioorganic & Medicinal Chemistry 2020.0
Identification and development of 2-methylimidazo[1,2-a]pyridine-3-carboxamides as Mycobacterium tuberculosis pantothenate synthetase inhibitors
Bioorganic & Medicinal Chemistry 2014.0
Design and Synthesis of a Focused Library of Diamino Triazines as Potential Mycobacterium tuberculosis DHFR Inhibitors
ACS Medicinal Chemistry Letters 2015.0
Design, synthesis, andin vitrobiological evaluation of novel benzimidazole tethered allylidenehydrazinylmethylthiazole derivatives as potent inhibitors ofMycobacterium tuberculosis
MedChemComm 2018.0