Hydrazone Linker as a Useful Tool for Preparing Chimeric Peptide/Nonpeptide Bifunctional Compounds

ACS Medicinal Chemistry Letters
2017.0

Abstract

The area of multitarget compounds, joining two pharmacophores within one molecule, is a vivid field of research in medicinal chemistry. Not only pharmacophoric elements are essential for the design and activity of such compounds, but the type and length of linkers used to connect them are also crucial. In the present contribution, we describe compound 1 in which a typical opioid peptide sequence is combined with a fragment characteristic for neurokinin-1 receptor (NK1R) antagonists through a hydrazone bridge. The compound has a high affinity for μ- and δ-opioid receptors (IC50= 12.7 and 74.0 nM, respectively) and a weak affinity for the NK1R. Molecular modeling and structural considerations explain the observed activities. In in vivo test, intrathecal and intravenous administrations of 1 exhibited a strong analgesic effect, which indicates potential BBB penetration. This letter brings an exemplary application of the hydrazone linker for fast, facile, and successful preparation of chimeric compounds.

Knowledge Graph

Similar Paper

Hydrazone Linker as a Useful Tool for Preparing Chimeric Peptide/Nonpeptide Bifunctional Compounds
ACS Medicinal Chemistry Letters 2017.0
Design and Synthesis of Novel Hydrazide-Linked Bifunctional Peptides as δ/μ Opioid Receptor Agonists and CCK-1/CCK-2 Receptor Antagonists
Journal of Medicinal Chemistry 2006.0
Bifunctional Peptide-Based Opioid Agonist–Nociceptin Antagonist Ligands for Dual Treatment of Acute and Neuropathic Pain
Journal of Medicinal Chemistry 2016.0
Synthesis and biological evaluation of compact, conformationally constrained bifunctional opioid agonist – Neurokinin-1 antagonist peptidomimetics
European Journal of Medicinal Chemistry 2015.0
Synthesis and receptor binding properties of chimeric peptides containing a μ-opioid receptor ligand and nociceptin/orphanin FQ receptor ligand Ac-RYYRIK-amide
Bioorganic & Medicinal Chemistry Letters 2006.0
Design, Synthesis, and Biological Evaluation of Novel Bifunctional C-Terminal-Modified Peptides for δ/μ Opioid Receptor Agonists and Neurokinin-1 Receptor Antagonists
Journal of Medicinal Chemistry 2007.0
Discovery of a Potent and Efficacious Peptide Derivative for δ/μ Opioid Agonist/Neurokinin 1 Antagonist Activity with a 2′,6′-Dimethyl-<scp>l</scp>-Tyrosine: In vitro, In vivo, and NMR-Based Structural Studies
Journal of Medicinal Chemistry 2011.0
A Structure–Activity Relationship Study and Combinatorial Synthetic Approach of C-Terminal Modified Bifunctional Peptides That Are δ/μ Opioid Receptor Agonists and Neurokinin 1 Receptor Antagonists
Journal of Medicinal Chemistry 2008.0
Biological and Conformational Evaluation of Bifunctional Compounds for Opioid Receptor Agonists and Neurokinin 1 Receptor Antagonists Possessing Two Penicillamines
Journal of Medicinal Chemistry 2010.0
Potent, Efficacious, and Stable Cyclic Opioid Peptides with Long Lasting Antinociceptive Effect after Peripheral Administration
Journal of Medicinal Chemistry 2020.0