New azepino[4,3-b]indole derivatives as nanomolar selective inhibitors of human butyrylcholinesterase showing protective effects against NMDA-induced neurotoxicity

European Journal of Medicinal Chemistry
2017.0

Abstract

Several 6-substituted 3,4,5,6-tetrahydroazepino[4,3-b]indol-1(2H)-one (THAI) derivatives were synthesized and evaluated for their activity as cholinesterase (ChE) inhibitors. The most potent inhibitors were identified among 6-(2-phenylethyl)-THAI derivatives, and in particular compounds 12b and 12d proved to be very active against human BChE (IC50 = 13 and 1.8 nM, respectively), with 1000-fold selectivity over AChE. Structure-activity relationships highlighted critical features (e.g., ring fusion [4,3-b], integrity of the lactam CONH function) and favorable physicochemical properties of the 6-(2-phenylethyl) group (i.e., optimal position, size and lipophilicity of phenyl substituents). The effects of a number of compounds against NMDA-induced SH-SY5Y neuronal cell injury were also evaluated. Treatment with 12b increased cell viability in SH-SY5Y cells pretreated with 250 μM NMDA, with significant effects (P < 0.05) at concentrations between 0.5 and 5 μM. These findings suggest that THAI can be used as a scaffold for developing new drug leads for the treatment of Alzheimer-type neurodegeneration syndrome.

Knowledge Graph

Similar Paper

New azepino[4,3-b]indole derivatives as nanomolar selective inhibitors of human butyrylcholinesterase showing protective effects against NMDA-induced neurotoxicity
European Journal of Medicinal Chemistry 2017.0
Investigating 1,2,3,4,5,6-hexahydroazepino[4,3-b]indole as scaffold of butyrylcholinesterase-selective inhibitors with additional neuroprotective activities for Alzheimer's disease
European Journal of Medicinal Chemistry 2019.0
Novel tetrahydrocarbazole benzyl pyridine hybrids as potent and selective butryl cholinesterase inhibitors with neuroprotective and β-secretase inhibition activities
European Journal of Medicinal Chemistry 2018.0
Tricyclic pyrazolo[1,5- d ][1,4]benzoxazepin-5(6H)-one scaffold derivatives: Synthesis and biological evaluation as selective BuChE inhibitors
European Journal of Medicinal Chemistry 2018.0
N-Acylaminophenothiazines: Neuroprotective agents displaying multifunctional activities for a potential treatment of Alzheimer’s disease
European Journal of Medicinal Chemistry 2011.0
Novel benzimidazole-based pseudo-irreversible butyrylcholinesterase inhibitors with neuroprotective activity in an Alzheimer's disease mouse model
RSC Medicinal Chemistry 2022.0
Design, synthesis, and biological evaluation of selective and potent Carbazole-based butyrylcholinesterase inhibitors
Bioorganic &amp; Medicinal Chemistry 2018.0
Development of multifunctional, heterodimeric isoindoline-1,3-dione derivatives as cholinesterase and β-amyloid aggregation inhibitors with neuroprotective properties
European Journal of Medicinal Chemistry 2015.0
N-Benzyl Benzamide Derivatives as Selective Sub-Nanomolar Butyrylcholinesterase Inhibitors for Possible Treatment in Advanced Alzheimer’s Disease
Journal of Medicinal Chemistry 2022.0
Design, synthesis, biological evaluation and molecular modeling of N-isobutyl-N-((2-(p-tolyloxymethyl)thiazol-4yl)methyl)benzo[d][1,3] dioxole-5-carboxamides as selective butyrylcholinesterase inhibitors
Bioorganic &amp; Medicinal Chemistry Letters 2022.0