Synthesis and antibacterial activity of novel 3- O -descladinosylazithromycin derivatives

European Journal of Medicinal Chemistry
2017.0

Abstract

Novel series of novel 3-O-arylalkylcarbamoyl descladinosylazithromycin derivatives with the 2'-O-acetyl and 11,12-cyclic carbonate groups, the 11,12-cyclic carbonate group and the 11-O-arylalkylcarbamoyl side chain, and 2'-O-arylalkylcarbamoyl descladinosylazithromycin with the 11,12-cyclic carbonate group were designed, synthesized and evaluated for their antibacterial activity using broth microdilution method. The results showed that the majority of the target compounds showed moderate to favorable activity against six kinds of susceptible strains and almost all of them displayed significantly improved activity compared with references against three erythromycin-resistant strains of S. pneumoniae B1 expressing the ermB gene, S. pneumoniae AB11 expressing the ermB and mefA genes, and S. pyogenes R1. In particular, compound 6h exhibited the most potent activity against susceptible B. subtilis ATCC9372 (0.5 μg/mL), penicillin-resistant S. epidermidis (0.125 μg/mL), and erythromycin-resistant S. pneumoniae B1 (1 μg/mL) and S. pneumoniae AB11 (1 μg/mL), which were 2-, 2-, 256-, 256-fold better activity than azithromycin, respectively. Additionally, compounds 6f (0.5 μg/mL) and 6g (0.25 μg/mL) were the most active against S. pneumoniae A22072, which were 8- and 16-fold better activity than azithromycin (4 μg/mL). As for erythromycin-resistant S. pyogenes R1, compound 5a presented the most excellent activity (8 μg/mL), showing 32- and 32-fold higher activity than azithromycin (256 μg/mL) and clarithromycin (256 μg/mL).

Knowledge Graph

Similar Paper

Synthesis and antibacterial activity of novel 3- O -descladinosylazithromycin derivatives
European Journal of Medicinal Chemistry 2017.0
Synthesis and antibacterial evaluation of novel 11- O -aralkylcarbamoyl-3- O -descladinosylclarithromycin derivatives
Bioorganic & Medicinal Chemistry Letters 2018.0
Synthesis and antibacterial activity of novel 3-O-carbamoyl derivatives of clarithromycin and 11,12-cyclic carbonate azithromycin
European Journal of Medicinal Chemistry 2010.0
Synthesis and antibacterial activity of novel 3-O-arylalkylcarbamoyl-3-O-descladinosyl-9-O-(2-chlorobenzyl)oxime clarithromycin derivatives
Bioorganic & Medicinal Chemistry Letters 2018.0
A novel series of 11-O-carbamoyl-3-O-descladinosyl clarithromycin derivatives bearing 1,2,3-triazole group: Design, synthesis and antibacterial evaluation
Bioorganic & Medicinal Chemistry Letters 2020.0
Design, synthesis and antibacterial evaluation of novel C-11, C-9 or C-2′-substituted 3-O-descladinosyl-3-ketoclarithromycin derivatives
Bioorganic & Medicinal Chemistry Letters 2021.0
Synthesis and antibacterial activity of 4″-O-(trans-β-arylacrylamido)carbamoyl azithromycin analogs
European Journal of Medicinal Chemistry 2015.0
Synthesis and antibacterial evaluation of novel 11,4″-disubstituted azithromycin analogs with greatly improved activity against erythromycin-resistant bacteria
European Journal of Medicinal Chemistry 2013.0
Synthesis and antibacterial activity of 4″,11-di-O-arylalkylcarbamoyl azithromycin derivatives
Bioorganic & Medicinal Chemistry Letters 2009.0
Synthesis and antibacterial activity of novel 4″-O-(1-aralkyl-1,2,3-triazol-4-methyl-carbamoyl) azithromycin analogs
Bioorganic & Medicinal Chemistry Letters 2017.0