New amphiphilic neamine conjugates bearing a metal binding motif active against MDR E. aerogenes Gram-negative bacteria

European Journal of Medicinal Chemistry
2017.0

Abstract

Structure of bacterial envelope is one of the major factors contributing to Gram negative bacterial resistance. To develop new agents that target the bacterial membranes, we synthesized, by analogy with our previous peptide conjugates, new amphiphilic 3',4',6-trinaphthylmethylene neamines functionalized at position 5 through a short spacer by a chelating group, tris(2-pyridylmethyl)amine (TPA) and di-(picolyl)amine (DPA) and tetraazacyclotetradecane (Cyclam). ESI+ mass spectrometry analyses showed that neither Zn(II)(NeaDPA) nor Cu(II)(NeaCyclam) were stable in the Mueller Hinton (MH) medium used for antibacterial assays. In contrast Zn(NeaTPA) was stable in the MH medium. Interestingly, in MH, the free ligand NeaTPA was found bound to zinc, the zinc salt being the most abundant salt in this medium. Thus, the antibacterial activities of all compounds were evaluated as free ligands against E. coli strains, wild type AG100 and E. aerogenes EA289 (a clinical MDR strain that overexpresses AcrAB-TolC efflux pump), as well as AG100A an AcrAB- E. coli strain and EA298 a TolC- derivative. NeaCyclam and Zn(NeaTPA) were by far the most efficient compounds active against resistant isolate EA289 with MICs in the range 16-4 and 4 μM, respectively, while usual antibiotics such as β-lactams and phenicols were inactive (MICs > 128) and ciprofloxacin was at 64 μM. Zn(NeaTPA) and NeaCyclam were shown to target and permeabilize the outer membrane of EA289 by promoting the cleavage of nitrocefin by periplasmic β-lactamase. Moreover, all the neamine conjugates were able to block the efflux of 1,2'-dinaphthylamine in EA289, by acting on the efflux transporter located in the inner membrane. These membranotropic properties contribute to explain the activities of these neamine conjugates toward the MDR EA289 strain.

Knowledge Graph

Similar Paper

New amphiphilic neamine conjugates bearing a metal binding motif active against MDR E. aerogenes Gram-negative bacteria
European Journal of Medicinal Chemistry 2017.0
Broad-spectrum antibacterial amphiphilic aminoglycosides: A new focus on the structure of the lipophilic groups extends the series of active dialkyl neamines
European Journal of Medicinal Chemistry 2018.0
Synthesis and Antimicrobial Evaluation of Amphiphilic Neamine Derivatives
Journal of Medicinal Chemistry 2010.0
New Broad-Spectrum Antibacterial Amphiphilic Aminoglycosides Active against Resistant Bacteria: From Neamine Derivatives to Smaller Neosamine Analogues
Journal of Medicinal Chemistry 2016.0
Tuning the Antibacterial Activity of Amphiphilic Neamine Derivatives and Comparison to Paromamine Homologues
Journal of Medicinal Chemistry 2013.0
Amphiphilic Tobramycin–Lysine Conjugates Sensitize Multidrug Resistant Gram-Negative Bacteria to Rifampicin and Minocycline
Journal of Medicinal Chemistry 2017.0
Search for new tools to combat Gram-negative resistant bacteria among amine derivatives of 5-arylidenehydantoin
Bioorganic & Medicinal Chemistry 2013.0
Rational Design of Dipicolylamine-Containing Carbazole Amphiphiles Combined with Zn<sup>2+</sup> as Potent Broad-Spectrum Antibacterial Agents with a Membrane-Disruptive Mechanism
Journal of Medicinal Chemistry 2021.0
Synthesis, antimicrobial activity, attenuation of aminoglycoside resistance in MRSA, and ribosomal A-site binding of pyrene-neomycin conjugates
European Journal of Medicinal Chemistry 2019.0
Antibacterial Diamines Targeting Bacterial Membranes
Journal of Medicinal Chemistry 2016.0