Structure–activity relationship studies on 1-(2-oxopropyl)indole-5-carboxylic acids acting as inhibitors of cytosolic phospholipase A2α: Effect of substituents at the indole 3-position on activity, solubility, and metabolic stability

European Journal of Medicinal Chemistry
2017.0

Abstract

Cytosolic phospholipase A2α (cPLA2α) is a key enzyme in the biosynthesis of pro-inflammatory lipid mediators and therefore represents an attractive target for the development of new anti-inflammatory drugs. Recently, we have found that 1-[3-(4-octylphenoxy)-2-oxopropyl]indole-5-carboxylic acid (4) is a potent inhibitor of the enzyme. In this work, we evaluate the effect of butanoyl- and hexanoyl-substituents in position 3 of the indole scaffold of this compound bearing terminal groups of varying polarity. As a result, inhibitory potency was not affected considerably in most cases, while metabolic phase I and phase II in vitro stability and aqueous solubility could be influenced and modulated by the structural modifications performed.

Knowledge Graph

Similar Paper

Structure–activity relationship studies on 1-(2-oxopropyl)indole-5-carboxylic acids acting as inhibitors of cytosolic phospholipase A2α: Effect of substituents at the indole 3-position on activity, solubility, and metabolic stability
European Journal of Medicinal Chemistry 2017.0
1-(5-Carboxyindol-1-yl)propan-2-one Inhibitors of Human Cytosolic Phospholipase A<sub>2</sub>α: Effect of Substituents in Position 3 of the Indole Scaffold on Inhibitory Potency, Metabolic Stability, Solubility, and Bioavailability
Journal of Medicinal Chemistry 2010.0
1-(5-Carboxyindol-1-yl)propan-2-one Inhibitors of Human Cytosolic Phospholipase A<sub>2</sub>α with Reduced Lipophilicity: Synthesis, Biological Activity, Metabolic Stability, Solubility, Bioavailability, And Topical in Vivo Activity
Journal of Medicinal Chemistry 2010.0
Synthesis and pharmacokinetic properties of novel cPLA2α inhibitors with 1-(carboxyalkylpyrrolyl)-3-aryloxypropan-2-one structure
Bioorganic &amp; Medicinal Chemistry 2023.0
Indole Cytosolic Phospholipase A<sub>2</sub>α Inhibitors: Discovery and in Vitro and in Vivo Characterization of 4-{3-[5-Chloro-2-(2-{[(3,4-dichlorobenzyl)sulfonyl]amino}ethyl)-1-(diphenylmethyl)-1H-indol-3-yl]propyl}benzoic Acid, Efipladib
Journal of Medicinal Chemistry 2008.0
Pyrrolidine Inhibitors of Human Cytosolic Phospholipase A<sub>2</sub>
Journal of Medicinal Chemistry 2000.0
Synthesis of new secretory phospholipase A2-inhibitory indole containing isoxazole derivatives as anti-inflammatory and anticancer agents
European Journal of Medicinal Chemistry 2016.0
Design of new potent and selective secretory phospholipase A2 inhibitors. Part 5: Synthesis and biological activity of 1-alkyl-4-[4,5-dihydro-1,2,4-[4H]-oxadiazol-5-one-3-ylmethylbenz-4′-yl(oyl)] piperazines
Bioorganic &amp; Medicinal Chemistry 2008.0
Structural Optimization and Biological Evaluation of 2-Substituted 5-Hydroxyindole-3-carboxylates as Potent Inhibitors of Human 5-Lipoxygenase
Journal of Medicinal Chemistry 2009.0
Pyrrolidine inhibitors of human cytosolic phospholipase A2. Part 2
Bioorganic &amp; Medicinal Chemistry Letters 2001.0