Targeting Mycolic Acid Transport by Indole-2-carboxamides for the Treatment of Mycobacterium abscessus Infections

Journal of Medicinal Chemistry
2017.0

Abstract

Mycobacterium abscessus is a fast-growing, multidrug-resistant organism that has emerged as a clinically significant pathogen in cystic fibrosis (CF) patients. The intrinsic resistance of M. abscessus to most commonly available antibiotics seriously restricts chemotherapeutic options. Herein, we report the potent activity of a series of indolecarboxamides against M. abscessus. The lead compounds, 6 and 12, exhibited strong activity in vitro against a wide panel of M. abscessus isolates and in infected macrophages. High resistance levels to the indolecarboxamides appear to be associated with an A309P mutation in the mycolic acid transporter MmpL3. Biochemical analyses demonstrated that while de novo mycolic acid synthesis remained unaffected, the indolecarboxamides strongly inhibited the transport of trehalose monomycolate, resulting in the loss of trehalose dimycolate production and abrogating mycolylation of arabinogalactan. Our data introduce a hereto unexploited chemical structure class active against M. abscessus infections with promising translational development possibilities for the treatment of CF patients.

Knowledge Graph

Similar Paper

Targeting Mycolic Acid Transport by Indole-2-carboxamides for the Treatment of Mycobacterium abscessus Infections
Journal of Medicinal Chemistry 2017.0
Indole-2-carboxamide-based MmpL3 Inhibitors Show Exceptional Antitubercular Activity in an Animal Model of Tuberculosis Infection
Journal of Medicinal Chemistry 2016.0
Amide–Amine Replacement in Indole-2-carboxamides Yields Potent Mycobactericidal Agents with Improved Water Solubility
ACS Medicinal Chemistry Letters 2021.0
Potential therapeutic targets from Mycobacterium abscessus (Mab): recently reported efforts towards the discovery of novel antibacterial agents to treat Mab infections
RSC Medicinal Chemistry 2022.0
Preliminary Structure–Activity Relationships and Biological Evaluation of Novel Antitubercular Indolecarboxamide Derivatives Against Drug-Susceptible and Drug-Resistant Mycobacterium tuberculosis Strains
Journal of Medicinal Chemistry 2013.0
Structural Rigidification of N-Aryl-pyrroles into Indoles Active against Intracellular and Drug-Resistant Mycobacteria
ACS Medicinal Chemistry Letters 2022.0
Design, Synthesis, and Biological Evaluation of Pyrrole-2-carboxamide Derivatives as Mycobacterial Membrane Protein Large 3 Inhibitors for Treating Drug-Resistant Tuberculosis
Journal of Medicinal Chemistry 2022.0
Lipolytic enzymes inhibitors: A new way for antibacterial drugs discovery
European Journal of Medicinal Chemistry 2021.0
Discovery of novel antitubercular 3a,4-dihydro-3H-indeno[1,2-c]pyrazole-2-carboxamide/carbothioamide analogues
Bioorganic & Medicinal Chemistry Letters 2011.0
Synthesis and antimycobacterial evaluation of 3a,4-dihydro-3H-indeno [1,2-c] pyrazole-2-carboxamide analogues
European Journal of Medicinal Chemistry 2011.0