In Vivo and Mechanistic Studies on Antitumor Lead 7-Methoxy-4-(2-methylquinazolin-4-yl)-3,4-dihydroquinoxalin-2(1H)-one and Its Modification as a Novel Class of Tubulin-Binding Tumor-Vascular Disrupting Agents

Journal of Medicinal Chemistry
2017.0

Abstract

7-Methoxy-4-(2-methylquinazolin-4-yl)-3,4-dihydroquinoxalin-2(1H)-one (2), a promising anticancer lead previously identified by us, inhibited tumor growth by 62% in mice at 1.0 mg/kg without obvious signs of toxicity. Moreover, compound 2 exhibited extremely high antiproliferative activity in the NIH-NCI 60 human tumor cell line panel, with low to sub-nanomolar GI50 values (10-10 M level). It also showed a suitable balance between aqueous solubility and lipophilicity, as well as moderate metabolic stability in vivo. Mechanistic studies using Mayer's hematoxylin and eosin and immunohistochemistry protocols on xenograft tumor tissues showed that 2 inhibited tumor cell proliferation, induced apoptosis, and disrupted tumor vasculature. Moreover, evaluation of new synthetic analogues (6a-6t) of 2 indicated that appropriate 2-substitution on the quinazoline ring could enhance antitumor activity and improve druglike properties. Compound 2 and its analogues with a 4-(2-methylquinazolin-4-yl)-3,4-dihydroquinoxalin-2(1H)-one scaffold thus represent a novel class of tubulin-binding tumor-vascular disrupting agents (tumor-VDAs) that target established blood vessels in tumors.

Knowledge Graph

Similar Paper

In Vivo and Mechanistic Studies on Antitumor Lead 7-Methoxy-4-(2-methylquinazolin-4-yl)-3,4-dihydroquinoxalin-2(1H)-one and Its Modification as a Novel Class of Tubulin-Binding Tumor-Vascular Disrupting Agents
Journal of Medicinal Chemistry 2017.0
Scaffold Hopping-Driven Optimization of 4-(Quinazolin-4-yl)-3,4-dihydroquinoxalin-2(1H)-ones as Novel Tubulin Inhibitors
ACS Medicinal Chemistry Letters 2020.0
Synthesis and Structure–Activity Relationships of N-Methyl-5,6,7-trimethoxylindoles as Novel Antimitotic and Vascular Disrupting Agents
Journal of Medicinal Chemistry 2013.0
Discovery of Novel Quinoline–Chalcone Derivatives as Potent Antitumor Agents with Microtubule Polymerization Inhibitory Activity
Journal of Medicinal Chemistry 2019.0
N-Aryl-6-methoxy-1,2,3,4-tetrahydroquinolines: A novel class of antitumor agents targeting the colchicine site on tubulin
European Journal of Medicinal Chemistry 2013.0
Discovery of a Novel Vascular Disrupting Agent Inhibiting Tubulin Polymerization and HDACs with Potent Antitumor Effects
Journal of Medicinal Chemistry 2022.0
Design, synthesis and antitumor activity of 4-aminoquinazoline derivatives targeting VEGFR-2 tyrosine kinase
Bioorganic & Medicinal Chemistry Letters 2012.0
Synthesis and Structure–Activity Relationship Study of 1-Phenyl-1-(quinazolin-4-yl)ethanols as Anticancer Agents
ACS Medicinal Chemistry Letters 2015.0
Antitumor Agents. 181. Synthesis and Biological Evaluation of 6,7,2‘,3‘,4‘-Substituted-1,2,3,4-tetrahydro-2-phenyl-4-quinolones as a New Class of Antimitotic Antitumor Agents
Journal of Medicinal Chemistry 1998.0
Antitumor Agents. Part 204: Synthesis and Biological Evaluation of Substituted 2-Aryl Quinazolinones
Bioorganic & Medicinal Chemistry Letters 2001.0