Design of Novel 3-Pyrimidinylazaindole CDK2/9 Inhibitors with Potent In Vitro and In Vivo Antitumor Efficacy in a Triple-Negative Breast Cancer Model

Journal of Medicinal Chemistry
2017.0

Abstract

In the present study, a novel series of 3-pyrimidinylazaindoles were designed and synthesized using a bioinformatics strategy as cyclin-dependent kinases CDK2 and CDK9 inhibitors, which play critical roles in the cell cycle control and regulation of cell transcription. The present approach gives new dimensions to the existing SAR and opens a new opportunity for the lead optimizations from comparatively inexpensive starting materials. The study led to the identification of the alternative lead candidate 4ab with a nanomolar potency against CDK2 and CDK9 and potent antiproliferative activities against a panel of tested tumor cell lines along with a better safety ratio of ∼33 in comparison to reported leads. In addition, the identified lead 4ab demonstrated a good solubility and an acceptable in vivo PK profile. The identified lead 4ab showed an in vivo efficacy in mouse triple-negative breast cancer (TNBC) syngeneic models with a TGI (tumor growth inhibition) of 90% without any mortality growth inhibition in comparison to reported leads.

Knowledge Graph

Similar Paper

Design of Novel 3-Pyrimidinylazaindole CDK2/9 Inhibitors with Potent In Vitro and In Vivo Antitumor Efficacy in a Triple-Negative Breast Cancer Model
Journal of Medicinal Chemistry 2017.0
A Novel Pyrazolo[1,5-a]pyrimidine Is a Potent Inhibitor of Cyclin-Dependent Protein Kinases 1, 2, and 9, Which Demonstrates Antitumor Effects in Human Tumor Xenografts Following Oral Administration
Journal of Medicinal Chemistry 2010.0
Design, synthesis and anticancer evaluation of selective 2,4-disubstituted pyrimidine CDK9 inhibitors
European Journal of Medicinal Chemistry 2022.0
Structure-based design of highly selective 2,4,5-trisubstituted pyrimidine CDK9 inhibitors as anti-cancer agents
European Journal of Medicinal Chemistry 2021.0
Design, synthesis, and biological evaluation of 4-benzoylamino-1H-pyrazole-3-carboxamide derivatives as potent CDK2 inhibitors
European Journal of Medicinal Chemistry 2021.0
Versatile templates for the development of novel kinase inhibitors: Discovery of novel CDK inhibitors
Bioorganic & Medicinal Chemistry Letters 2007.0
Discovery of novel 5-fluoro-N<sup>2</sup>,N<sup>4</sup>-diphenylpyrimidine-2,4-diamines as potent inhibitors against CDK2 and CDK9
MedChemComm 2014.0
4-Arylazo-3,5-diamino-1H-pyrazole CDK Inhibitors:  SAR Study, Crystal Structure in Complex with CDK2, Selectivity, and Cellular Effects
Journal of Medicinal Chemistry 2006.0
Indenopyrazoles as Novel Cyclin Dependent Kinase (CDK) Inhibitors
Journal of Medicinal Chemistry 2001.0
Synthesis, biological evaluation, and molecular docking studies of N-((1,3-diphenyl-1H-pyrazol-4-yl)methyl)aniline derivatives as novel anticancer agents
Bioorganic &amp; Medicinal Chemistry 2012.0