Design and synthesis of neolamellarin a derivatives targeting heat shock protein 90

European Journal of Medicinal Chemistry
2017.0

Abstract

In this study, we designed and synthesized a novel family of neolamellarin A derivatives that showed high inhibitory activity toward heat shock protein 90 (Hsp90), a kinase associated with cell proliferation. The 3,4-bis(catechol)pyrrole scaffold and the benzyl group with methoxy modification at N position of pyrrole are essential to the Hsp90 inhibitory activity and cytotoxicity of these compounds. Western blot analysis demonstrated that these compounds induced dramatic depletion of the examined client proteins of Hsp90, and accelerated cancer cell apoptosis. Docking simulations suggested that the binding mode of 9p was similar to that of the VER49009, a potent inhibitor of Hsp90. Further molecular dynamics simulation indicated that the hydrophobic interactions as well as the hydrogen bonds contributed to the high affinity of 9p to Hsp90.

Knowledge Graph

Similar Paper

Design and synthesis of neolamellarin a derivatives targeting heat shock protein 90
European Journal of Medicinal Chemistry 2017.0
Synthesis and Biological Activities of a New Class of Heat Shock Protein 90 Inhibitors, Designed by Energy-Based Pharmacophore Virtual Screening
Journal of Medicinal Chemistry 2013.0
Design, synthesis and biological evaluation of 7-(aryl)-2,3-dihydro-[1,4]dioxino[2,3- g ]quinoline derivatives as potential Hsp90 inhibitors and anticancer agents
Bioorganic & Medicinal Chemistry 2017.0
Synthesis and in vitro antiproliferative activity of C5-benzyl substituted 2-amino-pyrrolo[2,3- d ]pyrimidines as potent Hsp90 inhibitors
Bioorganic & Medicinal Chemistry Letters 2017.0
Design, synthesis, and biological evaluation of a series of resorcinol-based N-benzyl benzamide derivatives as potent Hsp90 inhibitors
European Journal of Medicinal Chemistry 2018.0
4-Amino derivatives of the Hsp90 inhibitor CCT018159
Bioorganic & Medicinal Chemistry Letters 2006.0
2-((1-Phenyl-1H-1,2,3-triazol-4-yl)methyl)-2-azabicyclo[3.2.1]octan-3-one derivatives: Simplification and modification of aconitine scaffold for the discovery of novel anticancer agents
European Journal of Medicinal Chemistry 2021.0
Discovery and development of heat shock protein 90 inhibitors
Bioorganic & Medicinal Chemistry 2009.0
Targeting the entry region of Hsp90's ATP binding pocket with a novel 6,7-dihydrothieno[3,2-c]pyridin-5(4H)-yl amide
European Journal of Medicinal Chemistry 2016.0
Synthesis and biological evaluation of 2,4-diaminoquinazoline derivatives as novel heat shock protein 90 inhibitors
Bioorganic & Medicinal Chemistry Letters 2011.0