Synthesis and molecular docking study of some 5,6-dichloro-2-cyclopropyl-1 H -benzimidazole derivatives bearing triazole, oxadiazole, and imine functionalities as potent inhibitors of urease

Bioorganic & Medicinal Chemistry Letters
2017.0

Abstract

A new series of benzimidazole compounds including hydrazinecarbothioamide, 1,2,4-triazole, 1,3,4-oxadiazole and imine function were synthesized starting from 5,6-dichloro-2-cyclopropyl-1H-benzimidazole. All of the benzimidazole derivatives exhibited good urease inhibitor activity. Compound 6a proved to be the most potent showing an enzyme inhibitory activity with an IC50=0.06µM. Molecular docking studies were also conducted on enzyme extracted from Jack bean urease to identify the binding mode of the newly synthesized compounds.

Knowledge Graph

Similar Paper

Synthesis and molecular docking study of some 5,6-dichloro-2-cyclopropyl-1 H -benzimidazole derivatives bearing triazole, oxadiazole, and imine functionalities as potent inhibitors of urease
Bioorganic & Medicinal Chemistry Letters 2017.0
Synthesis of novel derivatives of oxindole, their urease inhibition and molecular docking studies
Bioorganic & Medicinal Chemistry Letters 2015.0
Synthesis, biological assay in vitro and molecular docking studies of new Schiff base derivatives as potential urease inhibitors
European Journal of Medicinal Chemistry 2011.0
Synthesis, in vitro and in silico studies of novel potent urease inhibitors: N -[4-({5-[(3-Un/substituted-anilino-3-oxopropyl)sulfanyl]-1,3,4-oxadiazol-2-yl}methyl)-1,3-thiazol-2-yl]benzamides
Bioorganic & Medicinal Chemistry 2018.0
Design and synthesis of new barbituric- and thiobarbituric acid derivatives as potent urease inhibitors: Structure activity relationship and molecular modeling studies
Bioorganic & Medicinal Chemistry 2015.0
Synthesis, biological evaluation, and molecular docking studies of 2,5-substituted-1,4-benzoquinone as novel urease inhibitors
Bioorganic & Medicinal Chemistry 2012.0
Bisindolylmethane thiosemicarbazides as potential inhibitors of urease: Synthesis and molecular modeling studies
Bioorganic & Medicinal Chemistry 2018.0
Synthesis of diindolylmethane (DIM) bearing thiadiazole derivatives as a potent urease inhibitor
Scientific Reports 2020.0
Synthesis, molecular docking studies, and in vitro screening of sulfanilamide-thiourea hybrids as antimicrobial and urease inhibitors
Medicinal Chemistry Research 2013.0
Synthesis of potent urease inhibitors based on disulfide scaffold and their molecular docking studies
Bioorganic & Medicinal Chemistry 2015.0