Synthesis and evaluation of 7-substituted coumarin derivatives as multimodal monoamine oxidase-B and cholinesterase inhibitors for the treatment of Alzheimer's disease

European Journal of Medicinal Chemistry
2017.0

Abstract

A series of 7-substituted coumarin derivatives were designed and synthesised to display ChE and MAO-B inhibitory activity. The compounds consisted out of a coumarin structure (MAO-B inhibitor) and benzyl-, piperidine-, N-benzylpiperidine- or p-bromo-N-benzylpiperizine moiety, resembling the N-benzylpiperidine function of donepezil (ChE inhibitor), connected via an alkyl ether linkage at the 7 position. The biological assay results indicated that all the compounds (1-25) displayed selective inhibition to hMAO-B over hMAO-A, with the benzyloxy series (1-8, 10-13) showing nano-molar hMAO-B inhibition (IC50: 0.5-73 nM). Limited ChE inhibitory activity was however observed for the benzyloxy series with the exception of 2 and especially 3 showing selective BuChE inhibition. From this series 3 showed the best multifunctional activity (eqBuChE IC50 = 0.96 μM, hMAO-A IC50 = 2.13 μM, hMAO-B IC50 = 0.0021 μM). Within the N-benzylpiperidine (16-19) and p-bromo-N-benzylpiperizine (21-24) series the compounds in general showed moderate ChE and MAO-B inhibitory activity. Of these compounds 19 was the most potent multifunctional agent showing good eeAChE and eqBuChE inhibition (IC50 = 9.10 μM and 5.90 μM, respectively), and relatively potent and selective hMAO-B inhibition (IC50 = 0.30 μM, SI = >33). Molecular modeling revealed that 19 was able to bind simultaneously to the CAS, mid-gorge and PAS sites of AChE and BuChE suggesting that it will be able to inhibit AChE induced Aβ aggregation. From this study, compounds that 3 and 19 can be considered as promising multifunctional lead compounds.

Knowledge Graph

Similar Paper

Synthesis and evaluation of 7-substituted coumarin derivatives as multimodal monoamine oxidase-B and cholinesterase inhibitors for the treatment of Alzheimer's disease
European Journal of Medicinal Chemistry 2017.0
Design, synthesis and biological evaluation of novel coumarin- N -benzyl pyridinium hybrids as multi-target agents for the treatment of Alzheimer's disease
European Journal of Medicinal Chemistry 2017.0
Design, synthesis and biological evaluation of novel donepezil–coumarin hybrids as multi-target agents for the treatment of Alzheimer’s disease
Bioorganic & Medicinal Chemistry 2016.0
Structure-Based Design and Optimization of Multitarget-Directed 2H-Chromen-2-one Derivatives as Potent Inhibitors of Monoamine Oxidase B and Cholinesterases
Journal of Medicinal Chemistry 2015.0
3-Substituted coumarins as dual inhibitors of AChE and MAO for the treatment of Alzheimer's disease
Med. Chem. Commun. 2011.0
Multifunctional coumarin derivatives: Monoamine oxidase B (MAO-B) inhibition, anti-β-amyloid (Aβ) aggregation and metal chelation properties against Alzheimer’s disease
Bioorganic & Medicinal Chemistry Letters 2015.0
Multi-target tacrine-coumarin hybrids: Cholinesterase and monoamine oxidase B inhibition properties against Alzheimer's disease
European Journal of Medicinal Chemistry 2015.0
Synthesis, Biological Evaluation, and Molecular Modeling of Donepezil and N-[(5-(Benzyloxy)-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine Hybrids as New Multipotent Cholinesterase/Monoamine Oxidase Inhibitors for the Treatment of Alzheimer’s Disease
Journal of Medicinal Chemistry 2011.0
Coumarin derivatives as potential inhibitors of acetylcholinesterase: Synthesis, molecular docking and biological studies
Bioorganic & Medicinal Chemistry 2016.0
Design, synthesis and biological evaluation of coumarin alkylamines as potent and selective dual binding site inhibitors of acetylcholinesterase
Bioorganic & Medicinal Chemistry 2013.0