1,3-Oxazole-based selective picomolar inhibitors of cytosolic human carbonic anhydrase II alleviate ocular hypertension in rabbits: Potency is supported by X-ray crystallography of two leads

Bioorganic & Medicinal Chemistry
2017.0

Abstract

Two lead 1,3-oxazole-based carbonic anhydrase inhibitors (CAIs) earlier identified as selective, picomolar inhibitors of hCA II (a cytosolic target for treatment of glaucoma) have been investigated further. Firstly, they were found to be conveniently synthesized on multigram scale, which enables further development. These compounds were found to be comparable in efficacy to dorzolamide eye drops when applied in the eye drop form as well. Finally, the reasons for unusually high potency of these compounds became understood from their high-resolution X-ray crystallography structures. These data significantly expand our understanding of heterocycle-based primary sulfonamides, many of which have recently emerged from our labs - particularly, from the corneal permeability standpoint.

Knowledge Graph

Similar Paper

1,3-Oxazole-based selective picomolar inhibitors of cytosolic human carbonic anhydrase II alleviate ocular hypertension in rabbits: Potency is supported by X-ray crystallography of two leads
Bioorganic & Medicinal Chemistry 2017.0
Highly hydrophilic 1,3-oxazol-5-yl benzenesulfonamide inhibitors of carbonic anhydrase II for reduction of glaucoma-related intraocular pressure
Bioorganic & Medicinal Chemistry 2019.0
Discovery of Potent Dual-Tailed Benzenesulfonamide Inhibitors of Human Carbonic Anhydrases Implicated in Glaucoma and in Vivo Profiling of Their Intraocular Pressure-Lowering Action
Journal of Medicinal Chemistry 2020.0
Nitric oxide-donating carbonic anhydrase inhibitors for the treatment of open-angle glaucoma
Bioorganic & Medicinal Chemistry Letters 2009.0
Carbonic anhydrase inhibitors: Design of thioureido sulfonamides with potent isozyme II and XII inhibitory properties and intraocular pressure lowering activity in a rabbit model of glaucoma
Bioorganic & Medicinal Chemistry Letters 2005.0
Dithiocarbamates Strongly Inhibit Carbonic Anhydrases and Show Antiglaucoma Action in Vivo
Journal of Medicinal Chemistry 2012.0
Carbonic anhydrase inhibitors: The X-ray crystal structure of ethoxzolamide complexed to human isoform II reveals the importance of thr200 and gln92 for obtaining tight-binding inhibitors
Bioorganic & Medicinal Chemistry Letters 2008.0
Carbonic anhydrase inhibitors: N-(p-sulfamoylphenyl)-α-d-glycopyranosylamines as topically acting antiglaucoma agents in hypertensive rabbits
Bioorganic & Medicinal Chemistry Letters 2004.0
A Class of 4-Sulfamoylphenyl-ω-aminoalkyl Ethers with Effective Carbonic Anhydrase Inhibitory Action and Antiglaucoma Effects
Journal of Medicinal Chemistry 2014.0
Synthesis and crystallographic analysis of new sulfonamides incorporating NO-donating moieties with potent antiglaucoma action
Bioorganic & Medicinal Chemistry Letters 2011.0