Evaluation of Dual 5-Lipoxygenase/Microsomal Prostaglandin E2 Synthase-1 Inhibitory Effect of Natural and Synthetic Acronychia-Type Isoprenylated Acetophenones

Journal of Natural Products
2017.0

Abstract

Among the pathways responsible for the development of inflammatory responses, the cyclooxygenase and lipoxygenase pathways are among the most important ones. Two key enzymes, namely, 5-LO and mPGES-1, are involved in the biosynthesis of leukotrienes and prostaglandins, respectively, which are considered attractive therapeutic targets, so their dual inhibition might be an effective strategy to control inflammatory deregulation. Several natural products have been identified as 5-LO inhibitors, with some also being dual 5-LO/mPGES-1 inhibitors. Here, some prenylated acetophenone dimers from Acronychia pedunculata have been identified for their dual inhibitory potency toward 5-LO and mPGES-1. To gain insight into the SAR of this family of natural products, the synthesis and biological evaluation of analogues are presented. The results show the ability of the natural and synthetic molecules to potently inhibit 5-LO and mPEGS-1 in vitro. The potency of the most active compound (10) has been evaluated in vivo in an acute inflammatory mouse model and displayed potent anti-inflammatory activity comparable in potency to the drug zileuton used as a positive control.

Knowledge Graph

Similar Paper

Evaluation of Dual 5-Lipoxygenase/Microsomal Prostaglandin E2 Synthase-1 Inhibitory Effect of Natural and Synthetic Acronychia-Type Isoprenylated Acetophenones
Journal of Natural Products 2017.0
Pirinixic Acid Derivatives as Novel Dual Inhibitors of Microsomal Prostaglandin E<sub>2</sub>Synthase-1 and 5-Lipoxygenase
Journal of Medicinal Chemistry 2008.0
Discovery and Biological Evaluation of a Novel Class of Dual Microsomal Prostaglandin E<sub>2</sub>Synthase-1/5-lipoxygenase Inhibitors Based on 2-[(4,6-Diphenethoxypyrimidin-2-yl)thio]hexanoic Acid
Journal of Medicinal Chemistry 2011.0
Aminothiazole-Featured Pirinixic Acid Derivatives As Dual 5-Lipoxygenase and Microsomal Prostaglandin E<sub>2</sub>Synthase-1 Inhibitors with Improved Potency and Efficiency in Vivo
Journal of Medicinal Chemistry 2013.0
Inhibition of the enzymes in the leukotriene and prostaglandin pathways in inflammation by 3-aryl isocoumarins
European Journal of Medicinal Chemistry 2016.0
Benzo[d]isothiazole 1,1-dioxide derivatives as dual functional inhibitors of 5-lipoxygenase and microsomal prostaglandin E2 synthase-1
Bioorganic &amp; Medicinal Chemistry Letters 2014.0
Synthesis and Activity of a New Methoxytetrahydropyran Derivative as Dual Cyclooxygenase-2/5-Lipoxygenase Inhibitor
Bioorganic &amp; Medicinal Chemistry Letters 2002.0
Modified Acidic Nonsteroidal Anti-Inflammatory Drugs as Dual Inhibitors of mPGES-1 and 5-LOX
Journal of Medicinal Chemistry 2012.0
Synthesis of 1-(methanesulfonyl- and aminosulfonylphenyl)acetylenes that possess a 2-(N-difluoromethyl-1,2-dihydropyridin-2-one) pharmacophore: Evaluation as dual inhibitors of cyclooxygenases and 5-lipoxygenase with anti-inflammatory activity
Bioorganic &amp; Medicinal Chemistry Letters 2009.0
Structural insight into the optimization of ethyl 5-hydroxybenzo[g]indol-3-carboxylates and their bioisosteric analogues as 5-LO/m-PGES-1 dual inhibitors able to suppress inflammation
European Journal of Medicinal Chemistry 2018.0