Symmetrically Substituted Xanthone Amphiphiles Combat Gram-Positive Bacterial Resistance with Enhanced Membrane Selectivity

Journal of Medicinal Chemistry
2017.0

Abstract

This is the first report of the design of a new series of symmetric xanthone derivatives that mimic antimicrobial peptides using a total synthesis approach. This novel design is advantageous because of its low cost, synthetic simplicity and versatility, and easy tuning of amphiphilicity by controlling the incorporated cationic and hydrophobic moieties. Two water-soluble optimized compounds, 6 and 18, showed potent activities against Gram-positive bacteria, including MRSA and VRE (MICs = 0.78-6.25 μg/mL) with a rapid bactericidal effect, low toxicity, and no emergence of drug resistance. Both compounds demonstrated enhanced membrane selectivity that was higher than those of most membrane-active antimicrobials in clinical trials or previous reports. The compounds appear to kill bacteria by disrupting their membranes. Significantly, 6 was effective in vivo using a mouse model of corneal infection. These results provide compelling evidence that these compounds have therapeutic potential as novel antimicrobials for multidrug-resistant Gram-positive infections.

Knowledge Graph

Similar Paper

Symmetrically Substituted Xanthone Amphiphiles Combat Gram-Positive Bacterial Resistance with Enhanced Membrane Selectivity
Journal of Medicinal Chemistry 2017.0
Amino Acid Modified Xanthone Derivatives: Novel, Highly Promising Membrane-Active Antimicrobials for Multidrug-Resistant Gram-Positive Bacterial Infections
Journal of Medicinal Chemistry 2015.0
Design and Synthesis of Amphiphilic Xanthone-Based, Membrane-Targeting Antimicrobials with Improved Membrane Selectivity
Journal of Medicinal Chemistry 2013.0
Nonpeptidic Amphiphilic Xanthone Derivatives: Structure–Activity Relationship and Membrane-Targeting Properties
Journal of Medicinal Chemistry 2016.0
Design and Synthesis of Phenyl Sulfide-Based Cationic Amphiphiles as Membrane-Targeting Antimicrobial Agents against Gram-Positive Pathogens
Journal of Medicinal Chemistry 2022.0
Design, synthesis, and evaluation of amphiphilic sofalcone derivatives as potent Gram-positive antibacterial agents
European Journal of Medicinal Chemistry 2020.0
In Vitro and in Vivo Evaluation of Membrane-Active Flavone Amphiphiles: Semisynthetic Kaempferol-Derived Antimicrobials against Drug-Resistant Gram-Positive Bacteria
Journal of Medicinal Chemistry 2020.0
Synthesis and bioactivities study of new antibacterial peptide mimics: The dialkyl cationic amphiphiles
European Journal of Medicinal Chemistry 2018.0
Development of Highly Potent Carbazole Amphiphiles as Membrane-Targeting Antimicrobials for Treating Gram-Positive Bacterial Infections
Journal of Medicinal Chemistry 2020.0
Semisynthesis and Biological Evaluation of Xanthone Amphiphilics as Selective, Highly Potent Antifungal Agents to Combat Fungal Resistance
Journal of Medicinal Chemistry 2017.0