Novel 5-methyl-2-phenylphenanthridium derivatives as FtsZ-targeting antibacterial agents from structural simplification of natural product sanguinarine

Bioorganic & Medicinal Chemistry Letters
2018.0

Abstract

A novel series of 5-methyl-2-phenylphenanthridium derivatives were displayed outstanding activity against a panel of antibiotic-sensitive and -resistant bacteria strains compared with their precursor sanguinarine, ciprofloxacin and oxacillin sodium. Compounds 7 l, 7m and 7n were found to display the most effective activity against five sensitive strains (0.06-2 μg/mL) and three resistant strains (0.25-4 μg/mL). The kinetic profiles indicated that compound 7l possessed the strongest bactericidal effect on S. aureus ATCC25923, with the MBC value of 16 μg/mL. The cell morphology and the FtsZ polymerization assays indicated that these compounds inhibited the bacterial proliferation by interfering the function of bacterial FtsZ. The SARs showed that all the 4-methyl-substituted 5-methyl-2-phenylphenanthridium subseries could be further investigated as the FtsZ-targeting antibacterial agents.

Knowledge Graph

Similar Paper

Novel 5-methyl-2-phenylphenanthridium derivatives as FtsZ-targeting antibacterial agents from structural simplification of natural product sanguinarine
Bioorganic & Medicinal Chemistry Letters 2018.0
Antibacterial activity of substituted 5-methylbenzo[c]phenanthridinium derivatives
Bioorganic & Medicinal Chemistry Letters 2012.0
Synthesis and antibacterial activity of 5-methylphenanthridium derivatives as FtsZ inhibitors
Bioorganic & Medicinal Chemistry Letters 2017.0
3-Phenyl substituted 6,7-dimethoxyisoquinoline derivatives as FtsZ-targeting antibacterial agents
Bioorganic & Medicinal Chemistry 2012.0
Antibacterial activity of N -methylbenzofuro[3,2- b ]quinoline and N -methylbenzoindolo[3,2- b ]-quinoline derivatives and study of their mode of action
European Journal of Medicinal Chemistry 2017.0
Design, synthesis and evaluation of novel 9-arylalkyl-10-methylacridinium derivatives as highly potent FtsZ-targeting antibacterial agents
European Journal of Medicinal Chemistry 2021.0
Modification of 5-methylphenanthridium from benzothiazoles to indoles as potent FtsZ inhibitors: Broadening the antibacterial spectrum toward vancomycin-resistant enterococci
European Journal of Medicinal Chemistry 2021.0
Antibacterial activity of quinoxalines, quinazolines, and 1,5-naphthyridines
Bioorganic & Medicinal Chemistry Letters 2013.0
Substituted 1,6-diphenylnaphthalenes as FtsZ-targeting antibacterial agents
Bioorganic & Medicinal Chemistry Letters 2013.0
Discovery of 1,3,4-oxadiazol-2-one-containing benzamide derivatives targeting FtsZ as highly potent agents of killing a variety of MDR bacteria strains
Bioorganic & Medicinal Chemistry 2019.0