Identification and preliminary structure-activity relationship studies of novel pyridyl sulfonamides as potential Chagas disease therapeutic agents

Bioorganic & Medicinal Chemistry Letters
2018.0

Abstract

Chagas disease is a neglected pathology responsible for about 12,000 deaths every year across Latin America. Although six million people are infected by the Trypanosoma cruzi, current therapeutic options are limited, highlighting the need for new drugs. Here we report the preliminary structure activity relationships of a small library of 17 novel pyridyl sulfonamide derivatives. Analogues 4 and 15 displayed significant potency against intracellular amastigotes with EC50 of 5.4 µM and 8.6 µM. In cytotoxicity assays using mice fibroblast L929 cell lines, both compounds indicated low toxicity with decent selectivity indices (SI) >36 and >23 respectively. Hence these compounds represent good starting points for further lead optimization.

Knowledge Graph

Similar Paper

Identification and preliminary structure-activity relationship studies of novel pyridyl sulfonamides as potential Chagas disease therapeutic agents
Bioorganic & Medicinal Chemistry Letters 2018.0
In Vitro and in Vivo Anti-Trypanosoma cruzi Activity of New Arylamine Mannich Base-Type Derivatives
Journal of Medicinal Chemistry 2016.0
Synthesis, structure-activity relationship and trypanocidal activity of pyrazole-imidazoline and new pyrazole-tetrahydropyrimidine hybrids as promising chemotherapeutic agents for Chagas disease
European Journal of Medicinal Chemistry 2019.0
Identification of Pyrazolo[3,4-e][1,4]thiazepin based CYP51 inhibitors as potential Chagas disease therapeutic alternative: In vitro and in vivo evaluation, binding mode prediction and SAR exploration
European Journal of Medicinal Chemistry 2018.0
2-Pyridyl thiazoles as novel anti-Trypanosoma cruzi agents: Structural design, synthesis and pharmacological evaluation
European Journal of Medicinal Chemistry 2014.0
Hit-to-lead optimization of novel 2-alkylaminomethylquinoline derivatives as anti-chagas agents
European Journal of Medicinal Chemistry 2020.0
Triazolopyrimidines and Imidazopyridines: Structure–Activity Relationships and in Vivo Efficacy for Trypanosomiasis
ACS Medicinal Chemistry Letters 2019.0
Synthesis and biological evaluation of isoxazolyl-sulfonamides: A non-cytotoxic scaffold active against Trypanosoma cruzi, Leishmania amazonensis and Herpes Simplex Virus
Bioorganic & Medicinal Chemistry Letters 2018.0
Design, synthesis and molecular docking studies of novel N-arylsulfonyl-benzimidazoles with anti Trypanosoma cruzi activity
European Journal of Medicinal Chemistry 2019.0
In Vitro and in Vivo Antileishmanial and Trypanocidal Studies of New N-Benzene- and N-Naphthalenesulfonamide Derivatives
Journal of Medicinal Chemistry 2013.0