Design, synthesis and molecular modeling of new 4-phenylcoumarin derivatives as tubulin polymerization inhibitors targeting MCF-7 breast cancer cells

Bioorganic & Medicinal Chemistry
2018.0

Abstract

A new set of 4-phenylcoumarin derivatives was designed and synthesized aiming to introduce new tubulin polymerization inhibitors as anti-breast cancer candidates. All the target compounds were evaluated for their cytotoxic effects against MCF-7 cell line, where compounds 2f, 3a, 3b, 3f, 7a and 7b, showed higher cytotoxic effect (IC50 = 4.3-21.2 μg/mL) than the reference drug doxorubicin (IC50 = 26.1 μg/mL), additionally, compounds 1 and 6b exhibited the same potency as doxorubicin (IC50 = 25.2 and 28.0 μg/mL, respectively). The thiazolidinone derivatives 3a, 3b and 3f with potent and selective anticancer effects towards MCF-7 cells (IC50 = 11.1, 16.7 and 21.2 μg/mL) were further assessed for tubulin polymerization inhibition effects which showed that the three compounds were potent tubulin polymerization suppressors with IC50 values of 9.37, 2.89 and 6.13 μM, respectively, compared to the reference drug colchicine (IC50 = 6.93 μM). The mechanistic effects on cell cycle progression and induction of apoptosis in MCF-7 cells were determined for compound 3a due to its potent and selective cytotoxic effects in addition to its promising tubulin polymerization inhibition potency. The results revealed that compound 3a induced cell cycle cessation at G2/M phase and accumulation of cells in pre-G1 phase and prevented its mitotic cycle, in addition to its activation of caspase-7 mediating apoptosis of MCF-7 cells. Molecular modeling studies for compounds 3a, 3b and 3f were carried out on tubulin crystallography, the results indicated that the compounds showed binding mode similar to the co-crystalized ligand; colchicine. Moreover, pharmacophore constructed models and docking studies revealed that thiazolidinone, acetamide and coumarin moieties are crucial for the activity. Molecular dynamics (MD) studies were carried out for the three compounds over 100 ps. MD results of compound 3a showed that it reached the stable state after 30 ps which was in agreement with the calculated potential and kinetic energy of compound 3a.

Knowledge Graph

Similar Paper

Design, synthesis and molecular modeling of new 4-phenylcoumarin derivatives as tubulin polymerization inhibitors targeting MCF-7 breast cancer cells
Bioorganic & Medicinal Chemistry 2018.0
Synthesis and biological evaluation of novel 4,7-dihydroxycoumarin derivatives as anticancer agents
Bioorganic & Medicinal Chemistry Letters 2019.0
Design, synthesis and biological evaluation of 2-phenylquinoline-4-carboxamide derivatives as a new class of tubulin polymerization inhibitors
Bioorganic & Medicinal Chemistry 2017.0
Design, Synthesis, and Evaluation of in Vitro and in Vivo Anticancer Activity of 4-Substituted Coumarins: A Novel Class of Potent Tubulin Polymerization Inhibitors
Journal of Medicinal Chemistry 2016.0
Synthesis, biological evaluation, and molecular docking studies of novel 1-benzene acyl-2-(1-methylindol-3-yl)-benzimidazole derivatives as potential tubulin polymerization inhibitors
European Journal of Medicinal Chemistry 2015.0
Design, synthesis and biological evaluation of (E)-3-(3,4-dihydroxyphenyl)acrylylpiperazine derivatives as a new class of tubulin polymerization inhibitors
Bioorganic & Medicinal Chemistry 2014.0
(E)-N-Aryl-2-oxo-2-(3,4,5-trimethoxyphenyl)acetohydrazonoyl cyanides as tubulin polymerization inhibitors: Structure-based bioisosterism design, synthesis, biological evaluation, molecular docking and in silico ADME prediction
Bioorganic & Medicinal Chemistry Letters 2018.0
Design, synthesis and bioevaluation of 6-aryl-1-(3,4,5-trimethoxyphenyl)-1H-benzo[d]imidazoles as tubulin polymerization inhibitors
European Journal of Medicinal Chemistry 2021.0
Synthesis and bioactive evaluation of N-((1-methyl-1H-indol-3-yl)methyl)-N-(3,4,5-trimethoxyphenyl)acetamide derivatives as agents for inhibiting tubulin polymerization
RSC Medicinal Chemistry 2022.0
Synthesis of tetrazole–isoxazoline hybrids as a new class of tubulin polymerization inhibitors
MedChemComm 2012.0