Novel 6-substituted benzoyl and non-benzoyl straight chain pyrrolo[2,3- d ]pyrimidines as potential antitumor agents with multitargeted inhibition of TS, GARFTase and AICARFTase

European Journal of Medicinal Chemistry
2017.0

Abstract

A novel series of 6-substituted benzoyl and non-benzoyl straight chain pyrrolo[2,3-d]pyrimidines were designed and synthesized as potential antitumor agents targeting both thymidylate and purine nucleotide biosynthesis. Starting from the key intermediate 2-amino-4-oxo-pyrrolo[2,3-d]pyrimidin-6-yl-acetic acid, target compounds 1-6 were successfully obtained through two sequential condensation and saponification reactions in decent yield. The newly synthesized compounds showed antiproliferative potencies against a panel of tumor cell lines including KB, SW620 and MCF7. In particular, most compounds of this series exhibited nanomolar to subnanomolar inhibitory activities toward KB tumor cells, significantly more potent than the positive control methotrexate (MTX) and pemetrexed (PMX). Along with the results of nucleoside protection assays, molecular modeling studies suggested that the antitumor activity of compound 6 could be attributed to multitargeted inhibition of folate-dependent enzymes thymidylate synthase (TS), glycinamide ribonucleotide formyltransferase (GARFTase) and 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase (AICARFTase). Growth inhibition by compound 6 also induced distinct early apoptosis and cell cycle arrest at S-phase, which resulted in cell death.

Knowledge Graph

Similar Paper

Novel 6-substituted benzoyl and non-benzoyl straight chain pyrrolo[2,3- d ]pyrimidines as potential antitumor agents with multitargeted inhibition of TS, GARFTase and AICARFTase
European Journal of Medicinal Chemistry 2017.0
Design, synthesis and biological evaluation of 6-substituted pyrrolo[2,3-d]pyrimidines as dual inhibitors of TS and AICARFTase and as potential antitumor agents
European Journal of Medicinal Chemistry 2016.0
Synthesis and antitumor activity of a novel series of 6-substituted pyrrolo[2,3-d]pyrimidines as potential nonclassical antifolates targeting both thymidylate and purine nucleotide biosynthesis
European Journal of Medicinal Chemistry 2015.0
Design, synthesis and biological evaluation of novel 6-substituted pyrrolo [3,2- d ] pyrimidine analogues as antifolate antitumor agents
European Journal of Medicinal Chemistry 2017.0
Tumor-Targeting with Novel Non-Benzoyl 6-Substituted Straight Chain Pyrrolo[2,3-d]pyrimidine Antifolates via Cellular Uptake by Folate Receptor α and Inhibition of de Novo Purine Nucleotide Biosynthesis
Journal of Medicinal Chemistry 2013.0
Targeting dihydrofolate reductase: Design, synthesis and biological evaluation of novel 6-substituted pyrrolo[2,3-d]pyrimidines as nonclassical antifolates and as potential antitumor agents
European Journal of Medicinal Chemistry 2019.0
Synthesis and Antitumor Activity of a Novel Series of 6-Substituted Pyrrolo[2,3-d]pyrimidine Thienoyl Antifolate Inhibitors of Purine Biosynthesis with Selectivity for High Affinity Folate Receptors and the Proton-Coupled Folate Transporter over the Reduced Folate Carrier for Cellular Entry
Journal of Medicinal Chemistry 2010.0
Synthesis, Biological, and Antitumor Activity of a Highly Potent 6-Substituted Pyrrolo[2,3-d]pyrimidine Thienoyl Antifolate Inhibitor with Proton-Coupled Folate Transporter and Folate Receptor Selectivity over the Reduced Folate Carrier That Inhibits β-Glycinamide Ribonucleotide Formyltransferase
Journal of Medicinal Chemistry 2011.0
Synthesis of N-{4-[(2,4-Diamino-5-methyl-4,7-dihydro-3H- pyrrolo[2,3-d]pyrimidin-6-yl)thio]benzoyl}-<scp>l</scp>-glutamic Acid and N-{4-[(2-Amino-4-oxo-5-methyl-4,7-dihydro-3H-pyrrolo[2,3-d]pyrimidin- 6-yl)thio]benzoyl}-<scp>l</scp>-glutamic Acid as Dual Inhibitors of Dihydrofolate Reductase and Thymidylate Synthase and as Potential Antitumor Agents
Journal of Medicinal Chemistry 2005.0
Synthesis and Discovery of High Affinity Folate Receptor-Specific Glycinamide Ribonucleotide Formyltransferase Inhibitors with Antitumor Activity
Journal of Medicinal Chemistry 2008.0