Anticancer properties of 4-thiazolidinone derivatives depend on peroxisome proliferator-activated receptor gamma (PPARγ)

European Journal of Medicinal Chemistry
2017.0

Abstract

Peroxisome proliferator-activated receptors (PPARs) play an important role in numerous chronic diseases such as diabetes, obesity, atherosclerosis and cancer, and PPAR modulators are among the approved drugs and drug-candidates for their treatment. The aim of this study was to elucidate the involvement of PPARs in the mechanism of cytotoxic and pro-apoptotic action of novel anticancer 4-thiazolidinone derivatives (Les-2194, Les-3377, Les-3640) and approved 4-thiazolidinones (Rosiglitazone, Pioglitazone) towards the human squamous carcinoma (SCC-15) cell line. Experiments with 4-thiazaolidinone derivatives and PPAR-specific siRNA were conducted and PPARα, PPARβ and PPARγ mRNA expression was studied. Moreover, after PPARα, PPARβ and PPARγ siRNA gene silencing, cell viability, cell metabolism and caspase-3 activity were measured. The results showed a decrease of mRNA expression of the studied PPARs in SCC-15 cells treated with 10 and 50 μM Les-2194, Les-3377 and Les-3640. PPARγ knockdown protected the cells from the cytotoxic effect of the tested compounds (50 μM). It was established that novel anticancer 4-thiazolidinone derivatives act mainly through the PPARγ pathway in SCC-15 cells. Our results suggest that all studied compounds act as PPARs agonists. Interestingly, silencing of PPARγ gene increases the expression of PPARα, PPARβ mRNA in SCC-15 cells. The anticancer potential of new studied compounds was more expressed as compared to Rosiglitazone and Pioglitazone.

Knowledge Graph

Similar Paper

Anticancer properties of 4-thiazolidinone derivatives depend on peroxisome proliferator-activated receptor gamma (PPARγ)
European Journal of Medicinal Chemistry 2017.0
Thiazolidinedione “Magic Bullets” Simultaneously Targeting PPARγ and HDACs: Design, Synthesis, and Investigations of their In Vitro and In Vivo Antitumor Effects
Journal of Medicinal Chemistry 2021.0
Development of a novel class of peroxisome proliferator-activated receptor (PPAR) gamma ligands as an anticancer agent with a unique binding mode based on a non-thiazolidinedione scaffold
Bioorganic & Medicinal Chemistry 2019.0
The Structure−Activity Relationship between Peroxisome Proliferator-Activated Receptor γ Agonism and the Antihyperglycemic Activity of Thiazolidinediones
Journal of Medicinal Chemistry 1996.0
Thiazolidine-2,4-diones derivatives as PPAR-γ agonists: Synthesis, molecular docking, in vitro and in vivo antidiabetic activity with hepatotoxicity risk evaluation and effect on PPAR-γ gene expression
Bioorganic & Medicinal Chemistry Letters 2014.0
Design and Synthesis of the First Generation of Dithiolane Thiazolidinedione- and Phenylacetic Acid-Based PPARγ Agonists
Journal of Medicinal Chemistry 2006.0
Design, synthesis, in silico molecular docking and biological evaluation of novel oxadiazole based thiazolidine-2,4-diones bis-heterocycles as PPAR-γ agonists
European Journal of Medicinal Chemistry 2014.0
Synthesis of N-(5-chloro-6-(quinolin-3-yloxy)pyridin-3-yl)benzenesulfonamide derivatives as non-TZD peroxisome proliferator-activated receptor γ (PPARγ) agonist
European Journal of Medicinal Chemistry 2012.0
Tetrazanbigen Derivatives as Peroxisome Proliferator-Activated Receptor Gamma (PPARγ) Partial Agonists: Design, Synthesis, Structure–Activity Relationship, and Anticancer Activities
Journal of Medicinal Chemistry 2021.0
Design and synthesis of 6-methyl-2-oxo-1,2,3,4-tetrahydro-pyrimidine-5-carboxylic acid derivatives as PPARγ activators
Bioorganic & Medicinal Chemistry Letters 2007.0