Discovery of 3-Benzyl-1-(trans-4-((5-cyanopyridin-2-yl)amino)cyclohexyl)-1-arylurea Derivatives as Novel and Selective Cyclin-Dependent Kinase 12 (CDK12) Inhibitors

Journal of Medicinal Chemistry
2018.0

Abstract

Cyclin-dependent kinase 12 (CDK12) plays a key role in the coordination of transcription with elongation and mRNA processing. CDK12 mutations found in tumors and CDK12 inhibition sensitize cancer cells to DNA-damaging reagents and DNA-repair inhibitors. This suggests that CDK12 inhibitors are potential therapeutics for cancer that may cause synthetic lethality. Here, we report the discovery of 3-benzyl-1-( trans-4-((5-cyanopyridin-2-yl)amino)cyclohexyl)-1-arylurea derivatives as novel and selective CDK12 inhibitors. Structure-activity relationship studies of a HTS hit, structure-based drug design, and conformation-oriented design using the Cambridge Structural Database afforded the optimized compound 2, which exhibited not only potent CDK12 (and CDK13) inhibitory activity and excellent selectivity but also good physicochemical properties. Furthermore, 2 inhibited the phosphorylation of Ser2 in the C-terminal domain of RNA polymerase II and induced growth inhibition in SK-BR-3 cells. Therefore, 2 represents an excellent chemical probe for functional studies of CDK12 and could be a promising lead compound for drug discovery.

Knowledge Graph

Similar Paper

Discovery of 3-Benzyl-1-(trans-4-((5-cyanopyridin-2-yl)amino)cyclohexyl)-1-arylurea Derivatives as Novel and Selective Cyclin-Dependent Kinase 12 (CDK12) Inhibitors
Journal of Medicinal Chemistry 2018.0
Current progress and novel strategies that target CDK12 for drug discovery
European Journal of Medicinal Chemistry 2022.0
Design, synthesis, and biological evaluation of 4-benzoylamino-1H-pyrazole-3-carboxamide derivatives as potent CDK2 inhibitors
European Journal of Medicinal Chemistry 2021.0
Noncovalent CDK12/13 dual inhibitors-based PROTACs degrade CDK12-Cyclin K complex and induce synthetic lethality with PARP inhibitor
European Journal of Medicinal Chemistry 2022.0
Development of Highly Potent and Selective Diaminothiazole Inhibitors of Cyclin-Dependent Kinases
Journal of Medicinal Chemistry 2013.0
Pyrazolo[3,4-c]pyridazines as Novel and Selective Inhibitors of Cyclin-Dependent Kinases
Journal of Medicinal Chemistry 2005.0
Substituted 4-(Thiazol-5-yl)-2-(phenylamino)pyrimidines Are Highly Active CDK9 Inhibitors: Synthesis, X-ray Crystal Structures, Structure–Activity Relationship, and Anticancer Activities
Journal of Medicinal Chemistry 2013.0
Structure-based design of a new class of highly selective aminoimidazo[1,2-a]pyridine-based inhibitors of cyclin dependent kinases
Bioorganic & Medicinal Chemistry Letters 2005.0
Design, synthesis and biological evaluation of 6-pyridylmethylaminopurines as CDK inhibitors
Bioorganic & Medicinal Chemistry 2011.0
4-Arylazo-3,5-diamino-1H-pyrazole CDK Inhibitors:  SAR Study, Crystal Structure in Complex with CDK2, Selectivity, and Cellular Effects
Journal of Medicinal Chemistry 2006.0