Identification of an Orally Bioavailable Chromene-Based Selective Estrogen Receptor Degrader (SERD) That Demonstrates Robust Activity in a Model of Tamoxifen-Resistant Breast Cancer

Journal of Medicinal Chemistry
2018.0

Abstract

About 75% of breast cancers are estrogen receptor alpha (ER-α) positive, and women typically initially respond well to antihormonal therapies such as tamoxifen and aromatase inhibitors, but resistance often emerges. Fulvestrant is a steroid-based, selective estrogen receptor degrader (SERD) that both antagonizes and degrades ER-α and shows some activity in patients who have progressed on antihormonal agents. However, fulvestrant must be administered by intramuscular injections that limit its efficacy. We describe the optimization of ER-α degradation efficacy of a chromene series of ER modulators resulting in highly potent and efficacious SERDs such as 14n. When examined in a xenograft model of tamoxifen-resistant breast cancer, 14n (ER-α degradation efficacy = 91%) demonstrated robust activity, while, despite superior oral exposure, 15g (ER-α degradation efficacy = 82%) was essentially inactive. This result suggests that optimizing ER-α degradation efficacy in the MCF-7 cell line leads to compounds with robust effects in models of tamoxifen-resistant breast cancer derived from an MCF-7 background.

Knowledge Graph

Similar Paper

Identification of an Orally Bioavailable Chromene-Based Selective Estrogen Receptor Degrader (SERD) That Demonstrates Robust Activity in a Model of Tamoxifen-Resistant Breast Cancer
Journal of Medicinal Chemistry 2018.0
Identification of GDC-0810 (ARN-810), an Orally Bioavailable Selective Estrogen Receptor Degrader (SERD) that Demonstrates Robust Activity in Tamoxifen-Resistant Breast Cancer Xenografts
Journal of Medicinal Chemistry 2015.0
Selective Estrogen Receptor Degraders (SERDs): A Promising Strategy for Estrogen Receptor Positive Endocrine-Resistant Breast Cancer
Journal of Medicinal Chemistry 2020.0
Maximizing ER-α Degradation Maximizes Activity in a Tamoxifen-Resistant Breast Cancer Model: Identification of GDC-0927
ACS Medicinal Chemistry Letters 2019.0
Design and Synthesis of Basic Selective Estrogen Receptor Degraders for Endocrine Therapy Resistant Breast Cancer
Journal of Medicinal Chemistry 2019.0
Novel Selective Estrogen Receptor Downregulators (SERDs) Developed against Treatment-Resistant Breast Cancer
Journal of Medicinal Chemistry 2017.0
Novel class of 7-Oxabicyclo[2.2.1]heptene sulfonamides with long alkyl chains displaying improved estrogen receptor α degradation activity
European Journal of Medicinal Chemistry 2019.0
Unexpected equivalent potency of a constrained chromene enantiomeric pair rationalized by co-crystal structures in complex with estrogen receptor alpha
Bioorganic & Medicinal Chemistry Letters 2019.0
Discovery of LSZ102, a Potent, Orally Bioavailable Selective Estrogen Receptor Degrader (SERD) for the Treatment of Estrogen Receptor Positive Breast Cancer
Journal of Medicinal Chemistry 2018.0
Estrogen receptor ligands. Part 10: Chromanes: old scaffolds for new SERAMs
Bioorganic & Medicinal Chemistry Letters 2005.0