Synthesis, cytotoxicity and structure-activity relationship of indolizinoquinolinedione derivatives as DNA topoisomerase IB catalytic inhibitors

European Journal of Medicinal Chemistry
2018.0

Abstract

Our previous studies reveal that indolizinoquinolinedione scaffold is a base to develop novel DNA topoisomerase IB (TOP1) catalytic inhibitors. In this work, twenty-three novel indolizinoquinolinedione derivatives were synthesized. TOP1-mediated relaxation, nicking and unwinding assays revealed that three fluorinated derivatives 26, 28 and 29, and one N,N-trans derivative 46 act as TOP1 catalytic inhibitors with higher TOP1 inhibition (++++) than camptothecin (+++) and without TOP1-mediated unwinding effect. MTT assay against five human cancer cell lines indicated that the highest cytotoxicity is 20 for CCRF-CEM cells, 25 for A549 and DU-145 cells, 26 for HCT116 cells, and 33 for Huh7 cells with GI50 values at nanomolar range. The drug-resistant cell assay indicated that compound 26 may mainly act to TOP1 in cells and are less of Pgp substrates. Flow cytometric analysis showed that compounds 26, 28 and 29 can obviously induce apoptosis of HCT116 cells. Moreover, the structure-activity relationship (SAR) of indolizinoquinolinedione derivatives was analyzed.

Knowledge Graph

Similar Paper

Synthesis, cytotoxicity and structure-activity relationship of indolizinoquinolinedione derivatives as DNA topoisomerase IB catalytic inhibitors
European Journal of Medicinal Chemistry 2018.0
Synthesis and biological evaluation of 6-substituted indolizinoquinolinediones as catalytic DNA topoisomerase I inhibitors
European Journal of Medicinal Chemistry 2015.0
Synthesis, cytotoxic activities and structure–activity relationships of topoisomerase I inhibitors: Indolizinoquinoline-5,12-dione derivatives
Bioorganic & Medicinal Chemistry 2008.0
Design, synthesis and biological evaluation of 3-substituted indenoisoquinoline derivatives as topoisomerase I inhibitors
Bioorganic & Medicinal Chemistry Letters 2016.0
Synthesis, Cytotoxicity, DNA Interaction, and Topoisomerase II Inhibition Properties of Novel Indeno[2,1-c]quinolin-7-one and Indeno[1,2-c]isoquinolin-5,11-dione Derivatives
Journal of Medicinal Chemistry 2008.0
Synthesis of New Indeno[1,2-c]isoquinolines:  Cytotoxic Non-Camptothecin Topoisomerase I Inhibitors
Journal of Medicinal Chemistry 2000.0
Design, synthesis, and biological evaluation of 1,3-diarylisoquinolines as novel topoisomerase I catalytic inhibitors
European Journal of Medicinal Chemistry 2018.0
Synthesis and biological evaluation of 6-fluoro-3-phenyl-7-piperazinyl quinolone derivatives as potential topoisomerase I inhibitors
European Journal of Medicinal Chemistry 2016.0
Discovery of a Novel Series of Quinolone and Naphthyridine Derivatives as Potential Topoisomerase I Inhibitors by Scaffold Modification
Journal of Medicinal Chemistry 2009.0
Synthesis and antiproliferative activity of indolizinophthalazine-5,12-dione derivatives, DNA topoisomerase IB inhibitors
European Journal of Medicinal Chemistry 2010.0