Structure-based design and structure-activity relationships of 1,2,3,4-tetrahydroisoquinoline derivatives as potential PDE4 inhibitors

Bioorganic & Medicinal Chemistry Letters
2018.0

Abstract

This paper describes our medicinal chemistry efforts on 7-(cyclopentyloxy)-6-methoxy1,2,3,4-tetrahydroisoquinoline scaffold: design, synthesis and biological evaluation using conformational restriction approach and bioisosteric replacement strategy. Biological data revealed that the majority of the synthesized compounds of this series displayed moderate to potent inhibitory activity against PDE4B and strong inhibition of LPS-induced TNFα release. Among them, compound 19 exhibited the strongest inhibition against PDE4B with an IC50 of 0.88 µM and 21 times more potent selectivity toward PDE4B over PDE4D when compared to rolipram. A primary structure-activity relationship study showed that the attachment of CH3O group or CF3O group to the phenyl ring at the para-position was helpful to enhance the inhibitory activity against PDE4B. Moreover, sulfonamide group played a key role in improving the inhibitory activity against PDE4B and subtype selectivity. In addition, the attachment of the additional rigid substituents at the C-3 position of 1,2,3,4-tetrahydroisoquinoline ring was favored to subtype selectivity, which was consistent well with the observed docking simulation.

Knowledge Graph

Similar Paper

Structure-based design and structure-activity relationships of 1,2,3,4-tetrahydroisoquinoline derivatives as potential PDE4 inhibitors
Bioorganic & Medicinal Chemistry Letters 2018.0
Design, synthesis and biological evaluation of novel tetrahydroisoquinoline derivatives as potential PDE4 inhibitors
Bioorganic & Medicinal Chemistry Letters 2015.0
Rational design of conformationally constrained oxazolidinone-fused 1,2,3,4-tetrahydroisoquinoline derivatives as potential PDE4 inhibitors
Bioorganic & Medicinal Chemistry 2017.0
Tetrahydroquinoline and tetrahydroisoquinoline derivatives as potential selective PDE4B inhibitors
Bioorganic & Medicinal Chemistry Letters 2018.0
Discovery of novel inhibitors of phosphodiesterase 4 with 1-phenyl-3,4-dihydroisoquinoline scaffold: Structure-based drug design and fragment identification
Bioorganic & Medicinal Chemistry Letters 2019.0
Design, synthesis and biological evaluation of 2,4-disubstituted oxazole derivatives as potential PDE4 inhibitors
Bioorganic & Medicinal Chemistry 2017.0
Novel Selective PDE4 Inhibitors. 2. Synthesis and Structure−Activity Relationships of 4-Aryl-Substituted cis-Tetra- and cis-Hexahydrophthalazinones
Journal of Medicinal Chemistry 2001.0
Synthesis and biological activities of 1-pyridylisoquinoline and 1-pyridyldihydroisoquinoline derivatives as PDE4 inhibitors
Bioorganic & Medicinal Chemistry Letters 2003.0
Structure-Aided Identification and Optimization of Tetrahydro-isoquinolines as Novel PDE4 Inhibitors Leading to Discovery of an Effective Antipsoriasis Agent
Journal of Medicinal Chemistry 2019.0
8-Substituted Analogues of 3-(3-Cyclopentyloxy-4-methoxy-benzyl)-8-isopropyl- adenine: Highly Potent and Selective PDE4 Inhibitors
Journal of Medicinal Chemistry 2005.0