Exploring the cycloheptathiophene-3-carboxamide scaffold to disrupt the interactions of the influenza polymerase subunits and obtain potent anti-influenza activity

European Journal of Medicinal Chemistry
2017.0

Abstract

With the aim to identify small molecules able to disrupt PA-PB1 subunits interaction of influenza virus (flu) RNA-dependent RNA polymerase, and based on previous structural and computational information, in this paper we have designed and synthesized a new series of cycloheptathiophene-3-carboxamide (cHTC) derivatives. Their biological evaluation led to highlight important structural insights along with new interesting compounds, such as the 2-hydroxybenzamido derivatives 29, 31, and 32, and the 4-aminophenyl derivative 54, which inhibited viral growth in the low micromolar range (EC50 = 0.18-1.2 μM) at no toxic concentrations (CC50 > 250 μM). This study permitted to obtain among the most potent anti-flu compounds within the PA-PB1 interaction inhibitors, confirming the cHTC scaffold as particularly suitable to achieve innovative anti-flu agents.

Knowledge Graph

Similar Paper

Exploring the cycloheptathiophene-3-carboxamide scaffold to disrupt the interactions of the influenza polymerase subunits and obtain potent anti-influenza activity
European Journal of Medicinal Chemistry 2017.0
Structural Investigation of Cycloheptathiophene-3-carboxamide Derivatives Targeting Influenza Virus Polymerase Assembly
Journal of Medicinal Chemistry 2013.0
Synthesis and characterization of 1,2,4-triazolo[1,5-a]pyrimidine-2-carboxamide-based compounds targeting the PA-PB1 interface of influenza A virus polymerase
European Journal of Medicinal Chemistry 2021.0
Synthesis and biological evaluation of a library of hybrid derivatives as inhibitors of influenza virus PA-PB1 interaction
European Journal of Medicinal Chemistry 2018.0
A Broad Anti-influenza Hybrid Small Molecule That Potently Disrupts the Interaction of Polymerase Acidic Protein–Basic Protein 1 (PA-PB1) Subunits
Journal of Medicinal Chemistry 2015.0
1,2,4-Triazolo[1,5-a]pyrimidines: Efficient one-step synthesis and functionalization as influenza polymerase PA-PB1 interaction disruptors
European Journal of Medicinal Chemistry 2021.0
Optimization of Small-Molecule Inhibitors of Influenza Virus Polymerase: From Thiophene-3-Carboxamide to Polyamido Scaffolds
Journal of Medicinal Chemistry 2014.0
4,6-Diphenylpyridines as Promising Novel Anti-Influenza Agents Targeting the PA–PB1 Protein–Protein Interaction: Structure–Activity Relationships Exploration with the Aid of Molecular Modeling
Journal of Medicinal Chemistry 2016.0
Discovery of 5-(5-fluoro-1H-pyrrolo[2,3-b]pyridin-3-yl)pyrazin-2(1H)-one derivatives as new potent PB2 inhibitors
Bioorganic & Medicinal Chemistry Letters 2019.0
Synthesis and structure-activity relationships of novel camphecene analogues as anti-influenza agents
Bioorganic & Medicinal Chemistry Letters 2019.0