Synthesis and 2D-QSAR studies of neolignan-based diaryl-tetrahydrofuran and -furan analogues with remarkable activity against Trypanosoma cruzi and assessment of the trypanothione reductase activity

European Journal of Medicinal Chemistry
2017.0

Abstract

Two series of diaryl-tetrahydrofuran and -furan were synthesised and screened for anti-trypanosomal activity against trypomastigote and amastigote forms of Trypanosoma cruzi, the causative agent of Chagas disease. Based on evidence that modification of a natural product may result in a more effective drug than the natural product itself, and using known neolignan inhibitors veraguensin 1 and grandisin 2 as templates to synthesise simpler analogues, remarkable anti-trypanosomal activity and selectivity were found for 3,5-dimethoxylated diaryl-furan 5c and 2,4-dimethoxylated diaryl-tetrahydrofuran 4e analogues with EC50 0.01 μM and EC50 0.75 μM, respectively, the former being 260-fold more potent than veraguensin 1 and 150-fold better than benznidazole, the current available drugs for Chagas disease treatment. The ability of the most potent anti-trypanosomal compounds to penetrate LLC-MK2 cells infected with T. cruzi amastigotes parasite was tested, which revealed 4e and 5e analogues as the most effective, causing no damage to mammalian cells. In particular, the majority of the derivatives were non-toxic against mice spleen cells. 2D-QSAR studies show the rigid central core and the position of dimethoxy-aryl substituents dramatically affect the anti-trypanosomal activity. The mode of action of the most active anti-trypanosomal derivatives was investigated by exploring the anti-oxidant functions of Trypanothione reductase (TR). As a result, diarylfuran series displayed the strongest inhibition, highlighting compounds 5d-e (IC50 19.2 and 17.7 μM) and 5f-g (IC50 8.9 and 7.4 μM), respectively, with similar or 2-fold higher than the reference inhibitor clomipramine (IC50 15.2 μM).

Knowledge Graph

Similar Paper

Synthesis and 2D-QSAR studies of neolignan-based diaryl-tetrahydrofuran and -furan analogues with remarkable activity against Trypanosoma cruzi and assessment of the trypanothione reductase activity
European Journal of Medicinal Chemistry 2017.0
Dehydrodieugenol B derivatives as antiparasitic agents: Synthesis and biological activity against Trypanosoma cruzi
European Journal of Medicinal Chemistry 2019.0
Synthesis and anti-Trypanosoma cruzi activity of derivatives from nor-lapachones and lapachones
Bioorganic & Medicinal Chemistry 2008.0
Natural-product-inspired design and synthesis of two series of compounds active against Trypanosoma cruzi: Insights into structure–activity relationship, toxicity, and mechanism of action
Bioorganic Chemistry 2022.0
Synthesis and SAR of new isoxazole-triazole bis-heterocyclic compounds as analogues of natural lignans with antiparasitic activity
Bioorganic & Medicinal Chemistry 2018.0
Anti-T. cruzi activities and QSAR studies of 3-arylquinoxaline-2-carbonitrile di-N-oxides
Bioorganic & Medicinal Chemistry Letters 2010.0
Design, synthesis and biological evaluation of quinazoline derivatives as anti-trypanosomatid and anti-plasmodial agents
European Journal of Medicinal Chemistry 2015.0
Rational design of nitrofuran derivatives: Synthesis and valuation as inhibitors of Trypanosoma cruzi trypanothione reductase
European Journal of Medicinal Chemistry 2017.0
Ligand-based design, synthesis, and experimental evaluation of novel benzofuroxan derivatives as anti-Trypanosoma cruzi agents
European Journal of Medicinal Chemistry 2013.0
Inhibitors ofTrypanosoma cruziTrypanothione Reductase Revealed by Virtual Screening and Parallel Synthesis
Journal of Medicinal Chemistry 2005.0